Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = stadium fire risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3618 KiB  
Article
Crowd Evacuation in Stadiums Using Fire Alarm Prediction
by Afnan A. Alazbah, Osama Rabie and Abdullah Al-Barakati
Sensors 2025, 25(9), 2810; https://doi.org/10.3390/s25092810 - 29 Apr 2025
Viewed by 938
Abstract
Ensuring rapid and efficient evacuation in high-density environments, such as stadiums, is critical for public safety during fire emergencies. Traditional fire alarm systems rely on reactive detection mechanisms, often resulting in delayed response times, increased panic, and overcrowding. This study introduces an AI-driven [...] Read more.
Ensuring rapid and efficient evacuation in high-density environments, such as stadiums, is critical for public safety during fire emergencies. Traditional fire alarm systems rely on reactive detection mechanisms, often resulting in delayed response times, increased panic, and overcrowding. This study introduces an AI-driven predictive fire alarm and evacuation model that leverages machine learning algorithms and real-time environmental sensor data to anticipate fire hazards before ignition, improving emergency response efficiency. To detect early fire risk indicators, the system processes data from 62,630 sensor measurements across 15 ecological parameters, including temperature, humidity, total volatile organic compounds (TVOC), CO2 levels, and particulate matter. A comparative analysis of six machine learning models—Logistic Regression, Support Vector Machines (SVM), Random Forest, and proposed EvacuNet—demonstrates that EvacuNet outperforms all other models, achieving an accuracy of 99.99%, precision of 1.00, recall of 1.00, and an AUC-ROC score close to 1.00. The predictive alarm system significantly reduces false alarm rates and enhances fire detection speed, allowing emergency responders to take preemptive action. Moreover, integrating AI-driven evacuation optimization minimizes bottlenecks and congestion, reduces evacuation times, and improves structured crowd movement. These findings underscore the necessity of intelligent fire detection systems in high-occupancy venues, demonstrating that AI-based predictive modeling can drastically improve fire response and evacuation efficiency. Future research should focus on integrating IoT-enabled emergency navigation, reinforcement learning algorithms, and real-time crowd management systems to further enhance predictive accuracy and minimize casualties. By adopting such advanced technologies, large-scale venues can significantly improve emergency preparedness, reduce evacuation delays, and enhance public safety. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 4264 KiB  
Article
Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums
by Ying Lu, Xiaopeng Fan, Yi Zhang, Yong Wang and Xuepeng Jiang
Sensors 2023, 23(4), 2151; https://doi.org/10.3390/s23042151 - 14 Feb 2023
Cited by 18 | Viewed by 3961
Abstract
Machine learning methods can establish complex nonlinear relationships between input and response variables for stadium fire risk assessment. However, the output of machine learning models is considered very difficult due to their complex “black box” structure, which hinders their application in stadium fire [...] Read more.
Machine learning methods can establish complex nonlinear relationships between input and response variables for stadium fire risk assessment. However, the output of machine learning models is considered very difficult due to their complex “black box” structure, which hinders their application in stadium fire risk assessment. The SHapley Additive exPlanations (SHAP) method makes a local approximation to the predictions of any regression or classification model so as to be faithful and interpretable, and assigns significant values (SHAP value) to each input variable for a given prediction. In this study, we designed an indicator attribute threshold interval to classify and quantify different fire risk category data, and then used a random forest model combined with SHAP strategy in order to establish a stadium fire risk assessment model. The main objective is to analyze the impact analysis of each risk characteristic on four different risk assessment models, so as to find the complex nonlinear relationship between risk characteristics and stadium fire risk. This helps managers to be able to make appropriate fire safety management and smart decisions before an incident occurs and in a targeted manner to reduce the incidence of fires. The experimental results show that the established interpretable random forest model provides 83% accuracy, 86% precision, and 85% recall for the stadium fire risk test dataset. The study also shows that the low level of data makes it difficult to identify the range of decision boundaries for Critical mode and Hazardous mode. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 5329 KiB  
Article
Dynamic Fire Risk Classification Prediction of Stadiums: Multi-Dimensional Machine Learning Analysis Based on Intelligent Perception
by Ying Lu, Xiaopeng Fan, Zhipan Zhao and Xuepeng Jiang
Appl. Sci. 2022, 12(13), 6607; https://doi.org/10.3390/app12136607 - 29 Jun 2022
Cited by 12 | Viewed by 2714
Abstract
Stadium fires can easily cause massive casualties and property damage. The early risk prediction of stadiums will be able to reduce the incidence of fires by making corresponding fire safety management and decision making in an early and targeted manner. In the field [...] Read more.
Stadium fires can easily cause massive casualties and property damage. The early risk prediction of stadiums will be able to reduce the incidence of fires by making corresponding fire safety management and decision making in an early and targeted manner. In the field of building fires, some studies apply data mining techniques and machine learning algorithms to the collected risk hazard data for fire risk prediction. However, most of these studies use all attributes in the dataset, which may degrade the performance of predictive models due to data redundancy. Furthermore, machine learning algorithms are numerous and applied to fewer stadium fires, and it is crucial to explore models suitable for predicting stadium fire risk. The purpose of this study was to identify salient features to build a model for predicting stadium fire risk predictions. In this study, we designed an index attribute threshold interval to classify and quantify different fire risk data. We then used Gradient Boosting-Recursive Feature Elimination (GB-RFE) and Pearson correlation analysis to perform efficient feature selection on risk feature attributes to find the most informative salient feature subsets. Two cross-validation strategies were employed to address the dataset imbalance problem. Using the smart stadium fire risk data set provided by the Wuhan Emergency Rescue Detachment, the optimal prediction model was obtained based on the identified significant features and six machine learning methods of 12 combination forms, and full features were input as an experimental comparison study. Five performance evaluation metrics were used to evaluate and compare the combined models. Results show that the best performing model had an F1 score of 81.9% and an accuracy of 93.2%. Meanwhile, by introducing a precision-recall curve to explain the actual classification performance of each model, AdaBoost achieves the highest Auprc score (0.78), followed by SVM (0.77), which reveals more stable performance under such imbalanced data. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

Back to TopTop