Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = spindle azimuth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8568 KB  
Article
A Tuning Fork Gyroscope with a Polygon-Shaped Vibration Beam
by Qiang Xu, Zhanqiang Hou, Yunbin Kuang, Tongqiao Miao, Fenlan Ou, Ming Zhuo, Dingbang Xiao and Xuezhong Wu
Micromachines 2019, 10(12), 813; https://doi.org/10.3390/mi10120813 - 25 Nov 2019
Cited by 16 | Viewed by 5231
Abstract
In this paper, a tuning fork gyroscope with a polygon-shaped vibration beam is proposed. The vibration structure of the gyroscope consists of a polygon-shaped vibration beam, two supporting beams, and four vibration masts. The spindle azimuth of the vibration beam is critical for [...] Read more.
In this paper, a tuning fork gyroscope with a polygon-shaped vibration beam is proposed. The vibration structure of the gyroscope consists of a polygon-shaped vibration beam, two supporting beams, and four vibration masts. The spindle azimuth of the vibration beam is critical for performance improvement. As the spindle azimuth increases, the proposed vibration structure generates more driving amplitude and reduces the initial capacitance gap, so as to improve the signal-to-noise ratio (SNR) of the gyroscope. However, after taking the driving amplitude and the driving voltage into consideration comprehensively, the optimized spindle azimuth of the vibration beam is designed in an appropriate range. Then, both wet etching and dry etching processes are applied to its manufacture. After that, the fabricated gyroscope is packaged in a vacuum ceramic tube after bonding. Combining automatic gain control and weak capacitance detection technology, the closed-loop control circuit of the drive mode is implemented, and high precision output circuit is achieved for the gyroscope. Finally, the proposed Micro Electro Mechanical Systems (MEMS) gyroscope system demonstrates a bias instability of 0.589°/h, an angular random walk (ARW) of 0.038°/√h, and a bandwidth of greater than 100 Hz in a full scale range of ± 200°/s at room temperature. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors: Fabrication and Application, Volume II)
Show Figures

Graphical abstract

15 pages, 3278 KB  
Article
Numerical Simulation of Thermal-Solutal Capillary-Buoyancy Flow of Ge1–xSix Single Crystals Driven by Surface-Tension and Rotation in a Czochralski Configuration
by Jia-Jia Yu, Lu Zhang, Ting Shen, Li Zhang and You-Rong Li
Crystals 2019, 9(4), 217; https://doi.org/10.3390/cryst9040217 - 22 Apr 2019
Cited by 3 | Viewed by 3405
Abstract
A series of three-dimensional numerical simulations were performed to understand the thermal-solutal capillary-buoyancy flow of Ge1-xSix melts during Czochralski crystal growth with a rotating crystal or crucible. The crystal and crucible rotation Reynolds numbers in this work are 0∼3.5 × [...] Read more.
A series of three-dimensional numerical simulations were performed to understand the thermal-solutal capillary-buoyancy flow of Ge1-xSix melts during Czochralski crystal growth with a rotating crystal or crucible. The crystal and crucible rotation Reynolds numbers in this work are 0∼3.5 × 103 (0∼4.4 rpm) and 0∼−2.4 × 103 (0∼−1.5 rpm), respectively. Simulation results show that if the thermal capillary Reynolds number is relatively low, the flow will be steady and axisymmetric, even though the crystal or crucible rotates at a constant rate. The critical thermal capillary Reynolds number for the initiation of the three-dimensional oscillatory flow is larger than that of pure fluids. As the crystal or crucible rotation rate increases, the critical thermal capillary Reynolds number first increases and then decreases. The dominant flow pattern after the flow destabilization is azimuthal traveling waves. Furthermore, a reversed evolution from the oscillatory spoke pattern to traveling waves appears in the melt. Once the crystal or crucible rotation rate is relatively large, the traveling waves respectively evolve to rotating waves at the crystal rotation and a spindle-like pattern at the crucible rotation. In addition, the maximum amplitude of solute concentration oscillation on the free surface initially decreases, but finally rises with the crystal or crucible rotation rate increasing. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

20 pages, 31234 KB  
Article
Analysis and Design of a Polygonal Oblique Beam for the Butterfly Vibratory Gyroscope with Improved Robustness to Fabrication Imperfections
by Fenlan Ou, Zhanqiang Hou, Xuezhong Wu and Dingbang Xiao
Micromachines 2018, 9(5), 198; https://doi.org/10.3390/mi9050198 - 24 Apr 2018
Cited by 12 | Viewed by 4105
Abstract
This paper focuses on structural optimization of a Butterfly vibratory gyroscope (BFVG). An oblique suspension beam adopting polygonal cross-section is proposed in order to enhance the sensitivity and robustness. The operation principles of the BFVG are introduced. The suspension beam, which was found [...] Read more.
This paper focuses on structural optimization of a Butterfly vibratory gyroscope (BFVG). An oblique suspension beam adopting polygonal cross-section is proposed in order to enhance the sensitivity and robustness. The operation principles of the BFVG are introduced. The suspension beam, which was found to be the key component, is selectively stressed. Varying cross sections of the suspension beam, including parallelogram, pentagon, hexagon, platform of pentagon, L-shaped and convex shapes are compared with each other. In particular, in order to show the advantages of the proposed polygonal cross-section, the convex cross-section is used as a reference. The influence of fabrication imperfections, which includes alignment error, silicon thickness error, etching depth error, upper width error, bottom width error and deep reactive-ion etching (DRIE) verticality error, on the oblique beam’s spindle azimuth angle of the two cross-sections is analyzed. Further, the quadrature error of two cross-sections with a fabrication defect is analyzed. The theoretical arithmetic results suggest that a polygonal cross-section beam is much more stable than a convex cross-section beam in most cases. The robustness of the fabrication imperfection is improved nine-fold and the quadrature error due to fabrication defect is reduced by 70 percent with a polygonal cross-section. It could be a better candidate for BFVG’s oblique beam, which would provide a gyroscope with good robustness and repeatability. Full article
Show Figures

Figure 1

Back to TopTop