Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = spheronization aid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8653 KB  
Article
MUPS Tableting—Comparison between Crospovidone and Microcrystalline Cellulose Core Pellets
by Daniel Robin Thio, Paul Wan Sia Heng and Lai Wah Chan
Pharmaceutics 2022, 14(12), 2812; https://doi.org/10.3390/pharmaceutics14122812 - 15 Dec 2022
Cited by 12 | Viewed by 3840
Abstract
Multi-unit pellet system (MUPS) tablets were fabricated by compacting drug-loaded pellets of either crospovidone or microcrystalline cellulose core. These pellets were produced by extrusion-spheronization and coated with ethylcellulose (EC) for a sustained drug release function. Coat damage due to the MUPS tableting process [...] Read more.
Multi-unit pellet system (MUPS) tablets were fabricated by compacting drug-loaded pellets of either crospovidone or microcrystalline cellulose core. These pellets were produced by extrusion-spheronization and coated with ethylcellulose (EC) for a sustained drug release function. Coat damage due to the MUPS tableting process could undermine the sustained release function of the EC-coated pellets. Deformability of the pellet core is a factor that can impact the extent of pellet coat damage. Thus, this study was designed to evaluate the relative performance of drug-loaded pellets prepared with either microcrystalline cellulose (MCC) or crospovidone (XPVP) as a spheronization aid and were comparatively evaluated for their ability to withstand EC pellet coat damage when compacted. These pellets were tableted at various compaction pressures and pellet volume fractions. The extent of pellet coat damage was assessed by the change in drug release after compaction. The findings from this study demonstrated that pellets spheronized with XPVP had slightly less favorable physical properties and experienced comparatively more pellet coat damage than the pellets with MCC. However, MUPS tablets of reasonable quality could successfully be produced from pellets with XPVP, albeit their performance did not match that of vastly mechanically stronger pellets with MCC at higher compaction pressure. Full article
(This article belongs to the Special Issue New Technology for Prolonged Drug Release)
Show Figures

Graphical abstract

Back to TopTop