Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = spherical Al2O3 magnetic abrasive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5128 KB  
Article
A Comparative Study of Machining Property in Inconel 718 Superalloy Grinding with Al2O3- and CBN/Fe-Based Spherical Magnetic Abrasives
by Linzhi Jiang, Guixiang Zhang, Haozhe Zhang, Yandan Xia and Jinli Xiang
Coatings 2024, 14(6), 686; https://doi.org/10.3390/coatings14060686 - 1 Jun 2024
Viewed by 1025
Abstract
A comparative analysis was studied on the finishing performance of spherical CBN/Fe-based magnetic abrasive particles (MAPs) and Al2O3/Fe-based magnetic abrasive particles (MAPs) prepared by the gas atomization method in the magnetic abrasive finishing (MAF) of the Inconel 718 superalloy. [...] Read more.
A comparative analysis was studied on the finishing performance of spherical CBN/Fe-based magnetic abrasive particles (MAPs) and Al2O3/Fe-based magnetic abrasive particles (MAPs) prepared by the gas atomization method in the magnetic abrasive finishing (MAF) of the Inconel 718 superalloy. In the MAF, it was found that compared with Al2O3/Fe-based MAPs, CBN/Fe-based MAPs have a lower grinding temperature and generate less heat during the grinding of the Inconel 718 superalloy. The grinding pressure generated on the workpiece is relatively stable (Al2O3/Fe-based MAPs have a larger fluctuation range of grinding pressure on the workpiece surface during the grinding process). The surface roughness of the workpiece rapidly drops from Ra 0.57 μm to Ra 0.039 μm, and the material removal reaches 42 mg within 20 min. After finishing, the scratches on the surface of the workpiece basically disappear, the contour curve is relatively flat, and there is almost no adhesion on the surface of the workpiece. The mirror effect of the superalloy surface is good, and ultimately a better surface quality can be obtained. Full article
Show Figures

Figure 1

11 pages, 8689 KB  
Article
Investigation of Synthesis, Characterization, and Finishing Applications of Spherical Al2O3 Magnetic Abrasives via Plasma Molten Metal Powder and Powder Jetting
by Shujun Wang, Yusheng Zhang, Shuo Meng, Yugang Zhao and Jianbing Meng
Micromachines 2024, 15(6), 709; https://doi.org/10.3390/mi15060709 - 28 May 2024
Cited by 1 | Viewed by 1452
Abstract
Magnetic abrasive finishing (MAF) is an efficient finishing process method using magnetic abrasive particles (MAPs) as finishing tools. In this study, two iron-based alumina magnetic abrasives with different particle size ranges were synthesized by the plasma molten metal powder and powder jetting method. [...] Read more.
Magnetic abrasive finishing (MAF) is an efficient finishing process method using magnetic abrasive particles (MAPs) as finishing tools. In this study, two iron-based alumina magnetic abrasives with different particle size ranges were synthesized by the plasma molten metal powder and powder jetting method. Characterization of the magnetic abrasives in terms of microscopic morphology, phase composition, magnetic permeability, particle size distribution, and abrasive ability shows that the magnetic abrasives are spherical in shape, that the hard abrasives are combined in the surface layer of the iron matrix and remain sharp, and that the hard abrasives combined in the surface layer of the magnetic abrasives with smaller particle sizes are sparser than those of the magnetic abrasives with larger particle sizes. The magnetic abrasives are composed of α-Fe and Al2O3; the magnetic permeability of the magnetic abrasives having smaller particle sizes is slightly higher than that of the magnetic abrasives having larger particle sizes; the two magnetic abrasives are distributed in a range of different particle sizes; the magnetic abrasives have different magnetic permeabilities, which are higher than those of the larger ones; both magnetic abrasives are distributed in the range of smaller particle sizes; and AZ31B alloy can obtain smaller surface roughness of the workpiece after the grinding process of the magnetic abrasives with a small particle size. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 3rd Edition)
Show Figures

Figure 1

15 pages, 8262 KB  
Article
Investigation of Spherical Al2O3 Magnetic Abrasive Prepared by Novel Method for Finishing of the Inner Surface of Cobalt–Chromium Alloy Cardiovascular Stents Tube
by Guangxin Liu, Yugang Zhao, Zhihao Li, Hanlin Yu, Chen Cao, Jianbing Meng, Haiyun Zhang and Chuang Zhao
Micromachines 2023, 14(3), 621; https://doi.org/10.3390/mi14030621 - 8 Mar 2023
Cited by 7 | Viewed by 2585
Abstract
In this investigation, spherical Al2O3 magnetic abrasive particles (MAPs) were used to polish the inner surface of ultra-fine long cobalt–chromium alloy cardiovascular stent tubes. The magnetic abrasives were prepared by combining plasma molten metal powder and hard abrasives, and the [...] Read more.
In this investigation, spherical Al2O3 magnetic abrasive particles (MAPs) were used to polish the inner surface of ultra-fine long cobalt–chromium alloy cardiovascular stent tubes. The magnetic abrasives were prepared by combining plasma molten metal powder and hard abrasives, and the magnetic abrasives prepared by this new method are characterized by high sphericity, narrow particle size distribution range, long life, and good economic value. Firstly, the spherical Al2O3 magnetic abrasives were prepared by the new method; secondly, the polishing machine for the inner surface of the ultra-fine long cardiovascular stent tubes was developed; finally, the influence laws of spindle speed, magnetic pole speed, MAP filling quantities, the magnetic pole gap on the surface roughness (Ra), and the removal thickness (RT) of tubes were investigated. The results showed that the prepared Al2O3 magnetic abrasives were spherical in shape, and their superficial layer was tightly bound with Al2O3 hard abrasives with sharp cutting; the use of spherical Al2O3 magnetic abrasives could achieve the polishing of the inner surface of ultra-fine cobalt–chromium alloy cardiovascular bracket tubes, and after processing, the inner surface roughness (Ra) of the tubes decreased from 0.337 µm to 0.09 µm and had an RT of 5.106 µm. Full article
Show Figures

Figure 1

Back to TopTop