Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = spatial pyramid pooling pcanet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3521 KB  
Article
MMPCANet: An Improved PCANet for Occluded Face Recognition
by Zewei Wang, Yongjun Zhang, Chengchang Pan and Zhongwei Cui
Appl. Sci. 2022, 12(6), 3144; https://doi.org/10.3390/app12063144 - 19 Mar 2022
Cited by 5 | Viewed by 2785
Abstract
Principal Component Analysis Network (PCANet) is a lightweight deep learning network, which is fast and effective in face recognition. However, the accuracy of faces with occlusion does not meet the optimal requirement for two reasons: 1. PCANet needs to stretch the two-dimensional images [...] Read more.
Principal Component Analysis Network (PCANet) is a lightweight deep learning network, which is fast and effective in face recognition. However, the accuracy of faces with occlusion does not meet the optimal requirement for two reasons: 1. PCANet needs to stretch the two-dimensional images into column vectors, which causes the loss of essential image spatial information; 2. When the training samples are few, the recognition accuracy of PCANet is low. To solve the above problems, this paper proposes a multi-scale and multi-layer feature fusion-based PCANet (MMPCANet) for occluded face recognition. Firstly, a channel-wise concatenation of the original image features and the output features of the first layer is conducted, and then the concatenated result is used as the input of the second layer; therefore, more image feature information is used. In addition, to avoid the loss of image spatial information, a spatial pyramid is used as the feature pooling layer of the network. Finally, the feature vector is sent to the random forest classifier for classification. The proposed algorithm is tested on several widely used facial image databases and compared with other similar algorithms. Our experimental results show that the proposed algorithm effectively improves the efficiency of the network training and the recognition accuracy of occluded faces under the same training and testing datasets. The average accuracies are 98.78% on CelebA, 97.58% on AR, and 97.15% on FERET. Full article
Show Figures

Figure 1

17 pages, 2005 KB  
Article
Automatic Ship Detection in Optical Remote Sensing Images Based on Anomaly Detection and SPP-PCANet
by Nan Wang, Bo Li, Qizhi Xu and Yonghua Wang
Remote Sens. 2019, 11(1), 47; https://doi.org/10.3390/rs11010047 - 29 Dec 2018
Cited by 32 | Viewed by 7271
Abstract
Automatic ship detection technology in optical remote sensing images has a wide range of applications in civilian and military fields. Among most important challenges encountered in ship detection, we focus on the following three selected ones: (a) ships with low contrast; (b) sea [...] Read more.
Automatic ship detection technology in optical remote sensing images has a wide range of applications in civilian and military fields. Among most important challenges encountered in ship detection, we focus on the following three selected ones: (a) ships with low contrast; (b) sea surface in complex situations; and (c) false alarm interference such as clouds and reefs. To overcome these challenges, this paper proposes coarse-to-fine ship detection strategies based on anomaly detection and spatial pyramid pooling pcanet (SPP-PCANet). The anomaly detection algorithm, based on the multivariate Gaussian distribution, regards a ship as an abnormal marine area, effectively extracting candidate regions of ships. Subsequently, we combine PCANet and spatial pyramid pooling to reduce the amount of false positives and improve the detection rate. Furthermore, the non-maximum suppression strategy is adopted to eliminate the overlapped frames on the same ship. To validate the effectiveness of the proposed method, GF-1 images and GF-2 images were utilized in the experiment, including the three scenarios mentioned above. Extensive experiments demonstrate that our method obtains superior performance in the case of complex sea background, and has a certain degree of robustness to external factors such as uneven illumination and low contrast on the GF-1 and GF-2 satellite image data. Full article
(This article belongs to the Special Issue Pattern Analysis and Recognition in Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop