Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sorption distribution coefficient (logKd)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4265 KB  
Article
Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan
by Takashi Azuma
Appl. Sci. 2018, 8(11), 2043; https://doi.org/10.3390/app8112043 - 24 Oct 2018
Cited by 30 | Viewed by 5165
Abstract
This article reviews the pollution status of anticancer drugs present in the Yodo River basin located in the Kansai district of Japan, covering both the soluble and insoluble (adsorbed on the river sediments and suspended solids) levels. Procedures ranging from sampling in the [...] Read more.
This article reviews the pollution status of anticancer drugs present in the Yodo River basin located in the Kansai district of Japan, covering both the soluble and insoluble (adsorbed on the river sediments and suspended solids) levels. Procedures ranging from sampling in the field and instrumental analytical methods to the data processing for mass balance estimation of the target basin are also described. All anticancer drugs concerned with this article were detected in sewage and river waters, where the presence of bicalutamide (BLT) was identified at considerably high concentrations (maximum 254 ng/L in the main stream, 151 ng/L in tributaries, and 1032 ng/L in sewage treatment plant (STP) effluents). In addition, sorption distribution coefficient (logKd) values showed a tendency to become higher in the silty sediments at Suita Bridge than in the sandy sediments at Hirakata Bridge; these trends were supported by the results of the laboratory-scale sorption experiment. STPs were concluded to be the main sources of the anticancer drug load in the river, and a mass flux evaluation revealed that the effect of attenuation in the river environment was small. The effectiveness of ozonation in the sewage treatment process for removal of these anticancer drugs was further confirmed. The present article should be of value for facilitating the environmental risk assessment of a wide range of drugs in a broader geographical area. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

Back to TopTop