Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = soluble epoxide hydrolase inhibitor t-TUCB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3791 KiB  
Article
Effects of 17,18-Epoxyeicosatetraenoic Acid and 19,20-Epoxydocosapentaenoic Acid Combined with Soluble Epoxide Hydrolase Inhibitor t-TUCB on Brown Adipogenesis and Mitochondrial Respiration
by Yang Yang, Haoying Wu, Xinyun Xu, Christophe Morisseau, Kin Sing Stephen Lee, Bruce D. Hammock, Jiangang Chen and Ling Zhao
Nutrients 2025, 17(6), 936; https://doi.org/10.3390/nu17060936 - 7 Mar 2025
Viewed by 1096
Abstract
Background/Objectives: 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive metabolites produced from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively, by CYP450s. These metabolites are unstable and quickly metabolized by auto-oxidation, esterification, β-oxidation, or hydrolysis by soluble epoxide hydrolase (sEH). 17,18-EEQ [...] Read more.
Background/Objectives: 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive metabolites produced from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively, by CYP450s. These metabolites are unstable and quickly metabolized by auto-oxidation, esterification, β-oxidation, or hydrolysis by soluble epoxide hydrolase (sEH). 17,18-EEQ or 19,20-EDP combined with a potent sEH inhibitor t-TUCB differentially activated brown adipose tissue in diet-induced obesity. In the current study, we investigated whether these n-3 epoxy fatty acids with t-TUCB directly promote brown adipocyte differentiation and their thermogenic capacities. Methods: Murine brown preadipocytes were treated with 17,18-EEQ or 19,20-EDP with t-TUCB during and post differentiation. Brown marker protein expression and mitochondrial respiration were measured. In addition, the activation of PPARγ and suppression of NFκB reporter by 17,18-EEQ or 19,20-EDP alone or with t-TUCB were assessed, and the roles of PPARγ were evaluated with PPARγ knockdown and GW9662. Results: 17,18-EEQ or 19,20-EDP with t-TUCB promoted brown adipogenesis and mitochondrial respiration and uncoupling. Moreover, with t-TUCB, both epoxides improved mitochondrial respiration, but only 17,18-EEQ with t-TUCB significantly increased mitochondrial uncoupling (and heat production) in the differentiated adipocytes. PPARγ may be required for the effects of epoxides on differentiation but not on the thermogenic function post differentiation. Conclusions: The results demonstrate that, with t-TUCB, 17,18-EEQ and 19,20-EDP promote brown adipogenesis and mitochondrial respiration and uncoupling. 17,18-EEQ also promotes thermogenesis in differentiated brown adipocytes. Together, the results suggest thermogenic potentials of tested n-3 epoxides, especially 17,18-EEQ with t-TUCB. Translational studies of these n-3 epoxides on human brown adipocyte differentiation and functions are warranted. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 2958 KiB  
Article
Differential Effects of 17,18-EEQ and 19,20-EDP Combined with Soluble Epoxide Hydrolase Inhibitor t-TUCB on Diet-Induced Obesity in Mice
by Yang Yang, Xinyun Xu, Haoying Wu, Jun Yang, Jiangang Chen, Christophe Morisseau, Bruce D. Hammock, Ahmed Bettaieb and Ling Zhao
Int. J. Mol. Sci. 2021, 22(15), 8267; https://doi.org/10.3390/ijms22158267 - 31 Jul 2021
Cited by 13 | Viewed by 3975
Abstract
17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an [...] Read more.
17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an sEH inhibitor, t-TUCB, decreased serum triglycerides (TG) and increased lipid metabolic protein expression in the brown adipose tissue (BAT) of diet-induced obese mice. This study investigates the preventive effects of t-TUCB (T) alone or combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) on BAT activation in the development of diet-induced obesity and metabolic disorders via osmotic minipump delivery in mice. Both T + EDP and T + EEQ groups showed significant improvement in fasting glucose, serum triglycerides, and higher core body temperature, whereas heat production was only significantly increased in the T + EEQ group. Moreover, both the T + EDP and T + EEQ groups showed less lipid accumulation in the BAT. Although UCP1 expression was not changed, PGC1α expression was increased in all three treated groups. In contrast, the expression of CPT1A and CPT1B, which are responsible for the rate-limiting step for fatty acid oxidation, was only increased in the T + EDP and T + EEQ groups. Interestingly, as a fatty acid transporter, CD36 expression was only increased in the T + EEQ group. Furthermore, both the T + EDP and T + EEQ groups showed decreased inflammatory NFκB signaling in the BAT. Our results suggest that 17,18-EEQ or 19,20-EDP combined with t-TUCB may prevent high-fat diet-induced metabolic disorders, in part through increased thermogenesis, upregulating lipid metabolic protein expression, and decreasing inflammation in the BAT. Full article
(This article belongs to the Special Issue The Role of Hydrolases in Biology and Xenobiotics Metabolism)
Show Figures

Figure 1

20 pages, 5169 KiB  
Article
Soluble Epoxide Hydrolase Inhibition by t-TUCB Promotes Brown Adipogenesis and Reduces Serum Triglycerides in Diet-Induced Obesity
by Haley Overby, Yang Yang, Xinyun Xu, Katherine Graham, Kelsey Hildreth, Sue Choi, Debin Wan, Christophe Morisseau, Darryl C. Zeldin, Bruce D. Hammock, Shu Wang, Ahmed Bettaieb and Ling Zhao
Int. J. Mol. Sci. 2020, 21(19), 7039; https://doi.org/10.3390/ijms21197039 - 24 Sep 2020
Cited by 11 | Viewed by 4697
Abstract
Brown adipose tissue (BAT) is an important target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH) converts bioactive epoxy fatty acids (EpFAs) into less active diols. sEH inhibitors (sEHI) are beneficial in many chronic diseases by stabilizing EpFAs. However, roles of sEH [...] Read more.
Brown adipose tissue (BAT) is an important target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH) converts bioactive epoxy fatty acids (EpFAs) into less active diols. sEH inhibitors (sEHI) are beneficial in many chronic diseases by stabilizing EpFAs. However, roles of sEH and sEHI in brown adipogenesis and BAT activity in treating diet-induced obesity (DIO) have not been reported. sEH expression was studied in in vitro models of brown adipogenesis and the fat tissues of DIO mice. The effects of the sEHI, trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy-benzoic acid (t-TUCB), were studied in vitro and in the obese mice via mini osmotic pump delivery. sEH expression was increased in brown adipogenesis and the BAT of the DIO mice. t-TUCB promoted brown adipogenesis in vitro. Although t-TCUB did not change body weight, fat pad weight, or glucose and insulin tolerance in the obese mice, it decreased serum triglycerides and increased protein expression of genes important for lipid metabolism in the BAT. Our results suggest that sEH may play a critical role in brown adipogenesis, and sEHI may be beneficial in improving BAT protein expression involved in lipid metabolism. Further studies using the sEHI combined with EpFA generating diets for obesity treatment and prevention are warranted. Full article
(This article belongs to the Special Issue The Role of Hydrolases in Biology and Xenobiotics Metabolism)
Show Figures

Graphical abstract

Back to TopTop