Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = soluble and vesicular phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3009 KB  
Review
Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective
by Mubashar Rehman, Nayab Tahir, Muhammad Farhan Sohail, Muhammad Usman Qadri, Sofia O. D. Duarte, Pedro Brandão, Teresa Esteves, Ibrahim Javed and Pedro Fonte
Pharmaceutics 2024, 16(11), 1376; https://doi.org/10.3390/pharmaceutics16111376 - 26 Oct 2024
Cited by 28 | Viewed by 6785
Abstract
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems [...] Read more.
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release. Manipulating the structure of emulsions and solid lipid nanoparticles has enabled multifunctional nanoparticles and the loading of therapeutic macromolecules such as proteins, nucleic acid, vaccines, etc. Phospholipids and surfactants with a well-defined polar head and carbon chain have been used to prepare bilayer vesicles known as liposomes and niosomes, respectively. The increasing knowledge of targeting ligands and external factors to gain control over pharmacokinetics and the ever-increasing number of synthetic lipids are expected to make lipid nanoparticles and vesicular systems a preferred choice for the encapsulation and targeted delivery of therapeutic agents. This review discusses different lipids and oil-based nanoparticulate systems for the delivery of water-insoluble drugs. The salient features of each system are highlighted, and special emphasis is given to studies that compare them. Full article
(This article belongs to the Special Issue Liposomes Applied in Drug Delivery Systems)
Show Figures

Figure 1

19 pages, 3511 KB  
Article
Characterization and Physiological Differences of Two Primary Cultures of Human Normal and Hypertrophic Scar Dermal Fibroblasts: A Pilot Study
by Natalia M. Yudintceva, Yulia V. Kolesnichenko, Alla N. Shatrova, Nikolay D. Aksenov, Natalia M. Yartseva, Maxim A. Shevtsov, Viacheslav S. Fedorov, Mikhail G. Khotin, Rustam H. Ziganshin and Natalia A. Mikhailova
Biomedicines 2024, 12(10), 2295; https://doi.org/10.3390/biomedicines12102295 - 10 Oct 2024
Viewed by 2636
Abstract
Background/Objectives: Dermal fibroblasts (DFs) are key participants in skin hypertrophic scarring, and their properties are being studied to identify the molecular and cellular mechanisms underlying the pathogenesis of skin scarring. Methods: In the present work, we performed a comparative analysis of DFs isolated [...] Read more.
Background/Objectives: Dermal fibroblasts (DFs) are key participants in skin hypertrophic scarring, and their properties are being studied to identify the molecular and cellular mechanisms underlying the pathogenesis of skin scarring. Methods: In the present work, we performed a comparative analysis of DFs isolated from normal skin (normal dermal fibroblasts, NDFs), and hypertrophic scar skin (hypertrophic scar fibroblasts, HTSFs). The fibroblasts were karyotyped and phenotyped, and experiments on growth rate, wound healing, and single-cell motility were conducted. Results: Comparative analysis revealed a minor karyotype difference between cells. However, HTSFs are characterized by higher proliferation level and motility compared to NDFs. These significant differences may be associated with quantitative and qualitative differences in the cell secretome. A proteomic comparison of NDF and HTSF found that differences were associated with metabolic proteins reflecting physiological differences between the two cells lines. Numerous unique proteins were found only in the vesicular phase of vHTSFs. Some proteins involved in cell proliferation (protein-glutamine gamma-glutamyltransferase K) and cell motility (catenin delta-1), which regulate gene transcription and the activity of Rho family GTPases and downstream cytoskeletal dynamics, were identified. A number of proteins which potentially play a role in fibrosis and inflammation (mucin-5B, CD97, adhesion G protein-coupled receptor E2, antileukoproteinase, protein S100-A8 and S100-A9, protein caspase recruitment domain-containing protein 14) were detected in vHTSFs. Conclusions: A comparative analysis of primary cell cultures revealed their various properties, especially in the cell secretome. These proteins may be considered promising target molecules for developing treatment or prevention strategies for pathological skin scarring. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

Back to TopTop