Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sodium extruding pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1780 KiB  
Article
A New Thioalkalivibrio sp. Strain Isolated from Petroleum-Contaminated Brackish Estuary Sediments: A New Candidate for Bio-Based Application for Sulfide Oxidation in Halo-Alkaline Conditions
by Simone Becarelli, Salvatore La China, Alla Lapidus, Andrey Prijibelski, Dmitrii Polev, Giulio Petroni and Simona Di Gregorio
Water 2020, 12(5), 1385; https://doi.org/10.3390/w12051385 - 13 May 2020
Cited by 1 | Viewed by 3467
Abstract
A new halo-alkaline sulfur-oxidising bacterial strain was isolated from brackish estuary sediments contaminated by total petroleum hydrocarbon. The isolate was classified as a new strain of Thioalkalivibrio sulfidiphilus sp., showing a higher capability of adaptation to pH and a higher optimal sodium concentration [...] Read more.
A new halo-alkaline sulfur-oxidising bacterial strain was isolated from brackish estuary sediments contaminated by total petroleum hydrocarbon. The isolate was classified as a new strain of Thioalkalivibrio sulfidiphilus sp., showing a higher capability of adaptation to pH and a higher optimal sodium concentration for growth, when compared to Thioalkalivibrio sulfidiphilus sp. HL-EbGr7, type strain of the species. The strain was capable to grow in saline concentrations up to 1.5 M Na+ and pH up to 10. The genome of the new isolate was sequenced and annotated. The comparison with the genome of Thioalkalivibrio sulfidiphilus sp. HL-EbGr7 showed a duplication of an operon encoding for a putative primary sodium extruding pump and the presence of a sodium/proton antiporter with optimal efficiency at halo-alkaline conditions. The new strain was able to oxidize sulfide at halo-alkaline conditions at the rate of 1 mmol/mg-N/h, suitable for industrial applications dedicated to the recovery of alkaline scrubber for H2S emission absorption and abatement. Full article
Show Figures

Figure 1

Back to TopTop