Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sodium dodecylobenzene sulfonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4654 KiB  
Article
Removal of Copper(II) in the Presence of Sodium Dodecylobenzene Sulfonate from Acidic Effluents Using Adsorption on Ion Exchangers and Micellar-Enhanced Ultrafiltration Methods
by Anna Wołowicz, Katarzyna Staszak and Zbigniew Hubicki
Molecules 2022, 27(8), 2430; https://doi.org/10.3390/molecules27082430 - 9 Apr 2022
Cited by 10 | Viewed by 2581
Abstract
The selective removal of Cu(II) in the presence of sodium dodecylobenzene sulfonate from acidic effluents was made using the adsorption and micellar-enhanced ultrafiltration methods. Lewatit MonoPlus TP220 showed the best adsorption behavior in the systems containing Cu(II) in the presence of ABSNa50 surfactant [...] Read more.
The selective removal of Cu(II) in the presence of sodium dodecylobenzene sulfonate from acidic effluents was made using the adsorption and micellar-enhanced ultrafiltration methods. Lewatit MonoPlus TP220 showed the best adsorption behavior in the systems containing Cu(II) in the presence of ABSNa50 surfactant compared to the other adsorbents (removal efficiency ≈ 100%, sorption capacity ≈ 10 mg/g). The kinetics followed the pseudo-second order kinetic equation. The Langmuir adsorption capacities were 110 mg/g (the system with ABSNa50 above CMC) and 130.38 mg/g (the system with ABSNa50 below CMC). The working ion exchange capacities were Cw = 0.0216 g/mL and Cw = 0.0135 g/mL. The copper removal by the micellar-enhanced ultrafiltration method was 76.46% (0.1 mol/L HCl). Full article
Show Figures

Graphical abstract

Back to TopTop