Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = small-spacing double-track tunnel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3427 KiB  
Article
Theoretical Analysis of Surface Settlement During Parallel Construction of a Double-Track Tunnel with Small Spacing
by Yanao Liu, Yanfeng Li, Guojie Chen, Yuanhui Li, Jialong Li and Jiaxu Jin
Buildings 2025, 15(7), 1143; https://doi.org/10.3390/buildings15071143 - 31 Mar 2025
Viewed by 458
Abstract
The construction of urban subway tunnels typically induces soil settlement within a specific radius of the surrounding area. However, the accuracy of current methods for predicting ground deformation curves corresponding to the excavation of double-track tunnels with small spacing remains insufficient. Most studies [...] Read more.
The construction of urban subway tunnels typically induces soil settlement within a specific radius of the surrounding area. However, the accuracy of current methods for predicting ground deformation curves corresponding to the excavation of double-track tunnels with small spacing remains insufficient. Most studies simplify this problem by modeling it as a two-dimensional plane problem; however, the actual ground deformation exhibits pronounced three-dimensional characteristics. Consequently, studying the ground settlement patterns caused by the construction of small-spacing double-track tunnels is crucial. This study is based on the Peck formula, used to calculate surface settlement caused by the excavation of single-track tunnels. By incorporating the maximum settlement offset e and the soil loss rate η(y), the soil displacement calculation formula is derived for small-spacing double-track tunnel excavation. The accuracy of the derived formula is then validated through a case study. The findings provide a theoretical reference for predicting surface settlement induced by the excavation of small-spacing double-track tunnels. Furthermore, the influence of different parameters on ground settlement patterns is explored. The results indicate that appropriately increasing the tunnel spacing, increasing burial depth, and adopting a sequential excavation method for the two tunnels help reduce ground settlement. Full article
Show Figures

Figure 1

18 pages, 4244 KiB  
Article
Study on Dominant Frequency Attenuation of Blasting Vibration for Ultra-Small-Spacing Tunnel
by Xianshun Zhou, Xuemin Zhang, Han Feng, Shenglin Zhang, Junsheng Yang, Jinwei Mu and Tao Hu
Appl. Sci. 2022, 12(3), 1058; https://doi.org/10.3390/app12031058 - 20 Jan 2022
Cited by 6 | Viewed by 3357
Abstract
The middle rock pillar in ultra-small-spacing tunnels is significantly narrow, and the stability of the primary support and lining are easily influenced by the blasting vibration wave from an adjacent tunnel. Therefore, understanding the vibration frequency characteristics is essential for the blasting vibration [...] Read more.
The middle rock pillar in ultra-small-spacing tunnels is significantly narrow, and the stability of the primary support and lining are easily influenced by the blasting vibration wave from an adjacent tunnel. Therefore, understanding the vibration frequency characteristics is essential for the blasting vibration control. Based on the blasting works on a double-track roadway tunnel (Jiuwuji tunnel in Guizhou, China), this study investigates the dominant frequency attenuation in the preceding tunnel with the middle rock pillar spacing ranging from 4.0 m to 9.4 m. The results show that the ranges of the dominant frequency distributions on the primary support and lining are widely within 200 Hz, but there are varieties in their propagation laws. The distribution of the dominant frequencies on the primary support is broader than that on the lining; and the dominant frequencies are concentrated on a specific range when the lining is far from the blast face beside a particular value, which is not present on the primary support. As the presence of cavity and changing medium between the lining and the primary support, it made a significant contribution to the filtering the vibration waves. Furthermore, on the primary support, the high-frequency part of the vibration waves attenuates rapidly with distance, and then, the practical prediction equations describing dominant frequency attenuation were proposed. The comparison on frequency characteristics per delay for the millisecond delay blasting shows that multiple delay sequences blast contributes to a multi-structured amplitude spectrum of blast vibration waves; and the varies of the equivalent explosion sources dimensions and numbers of free surfaces in each blast delay resulting in diverse vibration waveforms. Finally, the dominant frequencies determined by different methods were compared, and the results show a nonlinear relationship between the ZCFs and DFs. The above research conclusion expands the understanding of blasting vibration in tunnel engineering, particularly in the frequency distribution. Full article
(This article belongs to the Topic Advances on Structural Engineering)
Show Figures

Figure 1

Back to TopTop