Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = small-overlap crash

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6254 KiB  
Article
Optimization Study of Driver Crash Injuries Considering the Body NVH Performance
by Min Li, Shunan Zhang, Xilong Zhang, Mingjun Qiu, Zhen Liu and Siyu He
Appl. Sci. 2023, 13(22), 12199; https://doi.org/10.3390/app132212199 - 10 Nov 2023
Cited by 2 | Viewed by 2086
Abstract
Optimal body structure design is a central focus in the field of passive automotive safety. A well-designed body structure enhances the lower threshold for crash safety, serving as a basis for the deployment of other safety systems. Frontal crashes, particularly those with an [...] Read more.
Optimal body structure design is a central focus in the field of passive automotive safety. A well-designed body structure enhances the lower threshold for crash safety, serving as a basis for the deployment of other safety systems. Frontal crashes, particularly those with an overlap rate below 25%, are the most frequent types of vehicular accidents and pose elevated risks to occupants due to variable energy absorption and force transmission mechanisms. This study aims to identify an optimized, cost-effective, and lightweight solution that minimizes occupant injuries. Using a micro-vehicle as a case study and accounting for noise, vibration, and harshness (NVH) performance, this paper employs Elman neural networks to predict key variables such as the first-order modes of the body, the body’s mass, and the head injury values for the driver. Guided by these predictions and constrained by the first-order modes and body mass, a genetic algorithm was applied to explore optimal solutions within the solution space defined by the body panel thickness. The optimized design yielded a reduction of approximately 173.43 in the driver’s head injury value while also enhancing the noise, vibration, and harshness performance of the vehicle body. This approach offers a methodological framework for future research into the multidisciplinary optimization of automotive body structures. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

18 pages, 4195 KiB  
Article
Frontal Vehicular Crash Energy Management Using Analytical Model in Multiple Conditions
by Danqi Wang, Junyuan Zhang, Shihang Wang and Lin Hu
Sustainability 2022, 14(24), 16913; https://doi.org/10.3390/su142416913 - 16 Dec 2022
Cited by 4 | Viewed by 4296
Abstract
When it comes to frontal vehicular crash development, matching the stiffness of the front-end structures reasonably, i.e., impact energy management, can effectively improve the safety of the vehicle. A multi-condition analytical model for a frontal vehicular crash is constructed by a three-dimensional decomposition [...] Read more.
When it comes to frontal vehicular crash development, matching the stiffness of the front-end structures reasonably, i.e., impact energy management, can effectively improve the safety of the vehicle. A multi-condition analytical model for a frontal vehicular crash is constructed by a three-dimensional decomposition theory. In the analytical model, the spring is used to express the equivalent stiffness of the local energy absorption space at the front-end structure. Then based on the analytical model, the dynamic responses and evaluation indexes of the vehicle in MPDB and SOB conditions are derived with the input of the crash pulse decomposition scheme. Comparing the actual vehicle crash data and the calculation results of the proposed solution method, the error is less than 15%, which verifies validity of the modeling and the accuracy of the solution. Finally, based on the solution method in the MPDB and the SOB conditions, the sensitivities of the crash pulse decomposition scheme to evaluation indexes are analyzed to obtain qualitative rules which guide crash energy management. This research reveals the energy absorption principle of the front-end structure during the frontal impact process, and provides an effective optimization method to manage the multiple conditions of the vehicle crash energy such as the FRB (frontal rigid barrier), the MPDB (mobile progressive deformable barrier), and the SOB (small overlap barrier). Full article
Show Figures

Figure 1

Back to TopTop