Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = sleep ontogeny

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 485 KB  
Review
Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review
by Hai-Lin Chen, Jin-Xian Gao, Yu-Nong Chen, Jun-Fan Xie, Yu-Ping Xie, Karen Spruyt, Jian-Sheng Lin, Yu-Feng Shao and Yi-Ping Hou
Int. J. Environ. Res. Public Health 2022, 19(20), 13101; https://doi.org/10.3390/ijerph192013101 - 12 Oct 2022
Cited by 15 | Viewed by 5526
Abstract
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a [...] Read more.
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a remarkably large amount of REM sleep has been identified in numerous behavioral and polysomnographic studies across species. The abundant REM sleep appears to serve to optimize a cerebral state suitable for homeostasis and inherent neuronal activities favorable to brain maturation, ranging from neuronal differentiation, migration, and myelination to synaptic formation and elimination. Progressively more studies in Mammalia have provided the underlying mechanisms involved in some REM sleep-related disorders (e.g., narcolepsy, autism, attention deficit hyperactivity disorder (ADHD)). We summarize the remarkable alterations of polysomnographic, behavioral, and physiological characteristics in humans and Mammalia. Through a comprehensive review, we offer a hybrid of animal and human findings, demonstrating that early-life REM sleep disturbances constitute a common feature of many neurodevelopmental disorders. Our review may assist and promote investigations of the underlying mechanisms, functions, and neurodevelopmental diseases involved in REM sleep during early life. Full article
(This article belongs to the Collection Sleep in Children)
22 pages, 551 KB  
Review
The Impact of Preterm Birth on Sleep through Infancy, Childhood and Adolescence and Its Implications
by Jayne Trickett, Catherine Hill, Topun Austin and Samantha Johnson
Children 2022, 9(5), 626; https://doi.org/10.3390/children9050626 - 27 Apr 2022
Cited by 24 | Viewed by 7035
Abstract
There is emergent literature on the relationship between the development of sleep-wake cycles, sleep architecture, and sleep duration during the neonatal period on neurodevelopmental outcomes among children born preterm. There is also a growing literature on techniques to assess sleep staging in preterm [...] Read more.
There is emergent literature on the relationship between the development of sleep-wake cycles, sleep architecture, and sleep duration during the neonatal period on neurodevelopmental outcomes among children born preterm. There is also a growing literature on techniques to assess sleep staging in preterm neonates using either EEG methods or heart and respiration rate. Upon discharge from hospital, sleep in children born preterm has been assessed using parent report, actigraphy, and polysomnography. This review describes the ontogeny and measurement of sleep in the neonatal period, the current evidence on the impact of preterm birth on sleep both in the NICU and in childhood and adolescence, and the interaction between sleep, cognition, and social-emotional outcomes in this population. Full article
Show Figures

Figure 1

21 pages, 2707 KB  
Review
From Neural Plate to Cortical Arousal—A Neuronal Network Theory of Sleep Derived from in Vitro “Model” Systems for Primordial Patterns of Spontaneous Bioelectric Activity in the Vertebrate Central Nervous System
by Michael A. Corner
Brain Sci. 2013, 3(2), 800-820; https://doi.org/10.3390/brainsci3020800 - 22 May 2013
Cited by 12 | Viewed by 8371
Abstract
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already [...] Read more.
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this “slow-wave” activity pattern becomes sporadically suppressed in favor of sensory oriented “waking” behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as “sleep” at several species-specific points in the diurnal/nocturnal cycle. Although this “default” behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent “paradoxical” activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced “aroused” firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny. Full article
(This article belongs to the Special Issue Sleep and Brain Development)
Show Figures

Figure 1

Back to TopTop