Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = silver oxynitrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5736 KiB  
Article
Directed Silica Co-Deposition by Highly Oxidized Silver: Enhanced Stability and Versatility of Silver Oxynitrate
by Carla J. Spina, Roohee Ladhani, Carlie Goodall, Michelle Hay and Rod Precht
Appl. Sci. 2019, 9(23), 5236; https://doi.org/10.3390/app9235236 - 2 Dec 2019
Cited by 5 | Viewed by 3920
Abstract
Novel silver compounds in higher oxidation states, Ag (II) and Ag (III), have emerged as desirable alternatives to existing forms of antimicrobial silver compounds. Offering enhanced efficacy without sacrificing biocompatibility. Unique physiochemical characteristics associated with higher oxidation state silver confer desirable therapeutic traits. [...] Read more.
Novel silver compounds in higher oxidation states, Ag (II) and Ag (III), have emerged as desirable alternatives to existing forms of antimicrobial silver compounds. Offering enhanced efficacy without sacrificing biocompatibility. Unique physiochemical characteristics associated with higher oxidation state silver confer desirable therapeutic traits. However, these same characteristics create challenges in terms of long-term stability and chemical compatibility with conventional biomedical materials. Core-shell methodologies, utilizing silica as a mesoporous or amorphous shell, have been adopted to enhance the stability of reactive active ingredients or cores. These methodologies commonly utilize controlled condensation of silicic acids in non-aqueous media by way of hydrolyzing alkyl silicates: the Stöber process or modified processes thereof. However, these strategies are not conducive to cores of higher oxidation state silver wherein hydroxyl organic precursors and by-products are incompatible with strong oxidizing agents. Addressing these challenges, we present a strategy herein for the preparation of a self-directed silver oxynitrate-silica, Ag7NO11:SiO2, framework. The method described utilizes pH gradients generated from the oxidation reaction of soluble silver, Ag (I), with a strong oxidizing agent/alkaline silicate media to facilitate spatial control over the protonation and subsequent condensation of silicic acid from aqueous solution. The resulting Ag7NO11:SiO2 framework confers enhanced long term and thermal stability to silver oxynitrate without impairing aqueous degradation profiles or subsequent antimicrobial and antibiofilm activities. Full article
Show Figures

Graphical abstract

Back to TopTop