Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sidetone signal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2110 KB  
Article
Integrated Communication and Navigation Measurement Signal Design for LEO Satellites with Side-Tone Modulation
by Xue Li, Yujie Feng and Linshan Xue
Sensors 2025, 25(18), 5890; https://doi.org/10.3390/s25185890 - 20 Sep 2025
Viewed by 216
Abstract
This paper proposes an integrated OFDM signal system combining sidetone signals for communication and measurement, addressing the challenges of system complexity, resource waste, and interference caused by separated communication and measurement functions in traditional LEO satellite systems. The proposed approach effectively combines sidetone [...] Read more.
This paper proposes an integrated OFDM signal system combining sidetone signals for communication and measurement, addressing the challenges of system complexity, resource waste, and interference caused by separated communication and measurement functions in traditional LEO satellite systems. The proposed approach effectively combines sidetone signals with OFDM technology, utilizing different short-period coprime pseudorandom codes as pilots to form composite ranging codes, while inserting multi-frequency sidetone signals at specific subcarrier points for precise ranging. A dual-mode channel estimation algorithm is designed to merge the channel estimation results from ranging pilots and sidetone signals, significantly enhancing system performance. Additionally, an adaptive ranging mode switching mechanism based on error thresholds achieves dynamic balance between ranging accuracy and spectral efficiency. Simulation results demonstrate that the proposed system can reduce bit error rate to approximately 10−3 at 6 dB SNR, saving about 3 dB of transmission power compared to conventional pilot methods, while achieving centimeter-level ranging accuracy of approximately 0.02 m, improving precision by 3–4 orders of magnitude over traditional pilot methods. The proposed scheme provides a high-precision, high-efficiency integrated solution for LEO satellite communication systems. The theoretical performance assumes idealized conditions, with practical deployment requiring comprehensive error modeling for hardware imperfections and environmental variations. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop