Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = shin shell micropyramid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 9374 KB  
Article
Ultrasonic-Assisted Incremental Microforming of Thin Shell Pyramids of Metallic Foil
by Toshiyuki Obikawa and Mamoru Hayashi
Micromachines 2017, 8(5), 142; https://doi.org/10.3390/mi8050142 - 3 May 2017
Cited by 21 | Viewed by 5974
Abstract
Single point incremental forming is used for rapid prototyping of sheet metal parts. This forming technology was applied to the fabrication of thin shell micropyramids of aluminum, stainless steel, and titanium foils. A single point tool used had a tip radius of 0.1 [...] Read more.
Single point incremental forming is used for rapid prototyping of sheet metal parts. This forming technology was applied to the fabrication of thin shell micropyramids of aluminum, stainless steel, and titanium foils. A single point tool used had a tip radius of 0.1 mm or 0.01 mm. An ultrasonic spindle with axial vibration was implemented for improving the shape accuracy of micropyramids formed on 5–12 micrometers-thick aluminum, stainless steel, and titanium foils. The formability was also investigated by comparing the forming limits of micropyramids of aluminum foil formed with and without ultrasonic vibration. The shapes of pyramids incrementally formed were truncated pyramids, twisted pyramids, stepwise pyramids, and star pyramids about 1 mm in size. A much smaller truncated pyramid was formed only for titanium foil for qualitative investigation of the size reduction on forming accuracy. It was found that the ultrasonic vibration improved the shape accuracy of the formed pyramids. In addition, laser heating increased the forming limit of aluminum foil and it is more effective when both the ultrasonic vibration and laser heating are applied. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing)
Show Figures

Figure 1

Back to TopTop