Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = shape-memory polymer nanocomposites (SMPNCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
69 pages, 15463 KB  
Review
Review of Shape-Memory Polymer Nanocomposites and Their Applications
by Rafiqul Islam, Sugandika Maparathne, Pailinrut Chinwangso and T. Randall Lee
Appl. Sci. 2025, 15(5), 2419; https://doi.org/10.3390/app15052419 - 24 Feb 2025
Cited by 14 | Viewed by 10871
Abstract
Shape-memory polymer nanocomposites (SMPNCs) have emerged as a transformative class of smart materials, combining the versatility of shape-memory polymers (SMPs) with the enhanced properties imparted by nanostructures. Integrating these nanofillers, this review explores the pivotal role of SMPNCs in addressing critical limitations of [...] Read more.
Shape-memory polymer nanocomposites (SMPNCs) have emerged as a transformative class of smart materials, combining the versatility of shape-memory polymers (SMPs) with the enhanced properties imparted by nanostructures. Integrating these nanofillers, this review explores the pivotal role of SMPNCs in addressing critical limitations of traditional SMPs, including low tensile strength, restricted actuation modes, and limited recovery stress. It comprehensively examines the integration of nanofillers, such as nanoparticles, nanotubes, and nanofibers, which augment mechanical robustness, thermal conductivity, and shape-recovery performance. It also consolidates foundational knowledge of SMPNCs, covering the principles of the shape-memory phenomenon, fabrication techniques, shape-recovery mechanisms, modeling approaches, and actuation methods, with an emphasis on the structural parameters of nanofillers and their interactions with polymer matrices. Additionally, the transformative real-world applications of SMPNCs are also highlighted, including their roles in minimally invasive medical devices, adaptive automotive systems, 4D printing, wearable electronics, and soft robotics. By providing a systematic overview of SMPNC development and applications, this review aims to serve as a comprehensive resource for scientists, engineers, and practitioners, offering a detailed roadmap for advancing smart materials and unlocking the vast potential of SMPNCs across various industries in the future. Full article
Show Figures

Figure 1

Back to TopTop