Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sewage sludge incineration (SSI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2422 KiB  
Article
Leaching of Titanium Dioxide Nanomaterials from Agricultural Soil Amended with Sewage Sludge Incineration Ash: Comparison of a Pilot Scale Simulation with Standard Laboratory Column Elution Experiments
by Boris Meisterjahn, Nicola Schröder, Jürgen Oischinger, Dieter Hennecke, Karlheinz Weinfurtner and Kerstin Hund-Rinke
Materials 2022, 15(5), 1853; https://doi.org/10.3390/ma15051853 - 1 Mar 2022
Cited by 2 | Viewed by 2494
Abstract
Nanoscale titanium dioxide (nTiO2 (Hombikat UV 100 WP)) was applied to sewage sludge that was incinerated in a large-scale waste treatment plant. The incineration ash produced was applied to soil as fertilizer at a realistic rate of 5% and investigated in pilot [...] Read more.
Nanoscale titanium dioxide (nTiO2 (Hombikat UV 100 WP)) was applied to sewage sludge that was incinerated in a large-scale waste treatment plant. The incineration ash produced was applied to soil as fertilizer at a realistic rate of 5% and investigated in pilot plant simulations regarding its leaching behavior for nTiO2. In parallel, the applied soil material was subject to standard column leaching (DIN 19528) in order to test the suitability of the standard to predict the leaching of nanoscale contaminants from treated soil material. Relative to the reference material (similar composition but without nTiO2 application before incineration) the test material had a total TiO2 concentration, increased by a factor of two or 3.8 g/kg, respectively. In contrast, the TiO2 concentration in the respective leachates of the simulation experiment differed by a factor of around 25 (maximum 91.24 mg), indicating that the added nTiO2 might be significantly mobilisable. Nanoparticle specific analysis of the leachates (spICP-MS) confirmed this finding. In the standard column elution experiment the released amount of TiO2 in the percolates between test and reference material differed by a factor of 4 to 6. This was also confirmed for the nTiO2 concentrations in the percolates. Results demonstrate that the standard column leaching, developed and validated for leaching prediction of dissolved contaminants, might be also capable to indicate increased mobility of nTiO2 in soil materials. However, experiments with further soils are needed to verify those findings. Full article
(This article belongs to the Special Issue Measurement of the Environmental Impact of Materials)
Show Figures

Figure 1

Back to TopTop