Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sequential heavy quark doublet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 369 KB  
Article
Connecting Electroweak Symmetry Breaking and Flavor: A Light Dilaton D and a Sequential Heavy Quark Doublet Q
by Wei-Shu Hou
Symmetry 2018, 10(8), 312; https://doi.org/10.3390/sym10080312 - 1 Aug 2018
Cited by 1 | Viewed by 2548
Abstract
The 125 GeV boson is quite consistent with the Higgs boson of the Standard Model (SM), but there is a challenge from Anderson as to whether this particle is in the Lagrangian. As Large Hadron Collider (LHC) Run 2 enters its final year [...] Read more.
The 125 GeV boson is quite consistent with the Higgs boson of the Standard Model (SM), but there is a challenge from Anderson as to whether this particle is in the Lagrangian. As Large Hadron Collider (LHC) Run 2 enters its final year of running, we ought to reflect and make sure we have gotten everything right. The ATLAS and CMS combined Run 1 analysis claimed a measurement of 5.4σ vector boson fusion (VBF) production which is consistent with SM, which seemingly refutes Anderson. However, to verify the source of electroweak symmetry breaking (EWSB), we caution that VBF measurement is too important for us to be imprudent in any way, and gluon–gluon fusion (ggF) with similar tag jets must be simultaneous measured, which should be achievable in LHC Run 2. The point is to truly test the dilaton possibility—the pseudo-Goldstone boson of scale invariance violation. We illustrate EWSB by dynamical mass generation of a sequential quark doublet (Q) via its ultrastrong Yukawa coupling and argue how this might be consistent with a 125 GeV dilaton, D. The ultraheavy 2mQ4–5 TeV scale explains the absence of New Physics so far, while the mass generation mechanism shields us from the UV theory for the strong Yukawa coupling. Collider and flavor physics implications are briefly touched upon. Current Run 2 analyses show correlations between the ggF and VBF measurements, but the newly observed tt¯H production at LHC poses a challenge. Full article
(This article belongs to the Special Issue Electroweak Symmetry and Theory)
Show Figures

Figure 1

Back to TopTop