Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = semi-infectious particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1575 KiB  
Review
Virus-like Particles: Measures and Biological Functions
by Tara Bhat, Amy Cao and John Yin
Viruses 2022, 14(2), 383; https://doi.org/10.3390/v14020383 - 14 Feb 2022
Cited by 35 | Viewed by 9997
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by [...] Read more.
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

13 pages, 2499 KiB  
Review
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons
by Mehdi Kabani
Int. J. Mol. Sci. 2021, 22(1), 90; https://doi.org/10.3390/ijms22010090 - 23 Dec 2020
Cited by 4 | Viewed by 3570
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are [...] Read more.
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud. Full article
(This article belongs to the Special Issue Clearance, Degradation and Transport of Protein Aggregates)
Show Figures

Figure 1

14 pages, 19074 KiB  
Article
Ocular Histopathological Findings in Semi-Domesticated Eurasian Tundra Reindeer (Rangifer tarandus tarandus) with Infectious Keratoconjunctivitis after Experimental Inoculation with Cervid Herpesvirus 2
by Javier Sánchez Romano, Karen K. Sørensen, Anett K. Larsen, Torill Mørk and Morten Tryland
Viruses 2020, 12(9), 1007; https://doi.org/10.3390/v12091007 - 9 Sep 2020
Cited by 6 | Viewed by 3840
Abstract
Infectious keratoconjunctivitis (IKC) is a common transmissible ocular disease in semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus). In large outbreaks, IKC may affect tens of animals in a herd, with the most severe cases often requiring euthanasia due to the destruction [...] Read more.
Infectious keratoconjunctivitis (IKC) is a common transmissible ocular disease in semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus). In large outbreaks, IKC may affect tens of animals in a herd, with the most severe cases often requiring euthanasia due to the destruction of the affected eyes and permanent blindness. An experimental inoculation with cervid herpesvirus 2 (CvHV2), alone or in combination with Moraxella bovoculi, demonstrated that CvHV2 has the ability to cause clinical signs of IKC in previously unexposed reindeer. Tissues collected from upper and lower eyelids, lacrimal gland and cornea, were processed for light and transmission electron microscopy. Histopathological analysis of the eyes inoculated with CvHV2 showed widespread and severe pathological findings. Mucosal tissues from these eyes showed fibrinous and purulent exudates, hyperemia, hemorrhages, necrosis, vascular thrombosis, vascular necrosis, infiltration of mononuclear cells and neutrophils, and lymphoid follicle reaction, which matches the described histopathology of IKC in reindeer. Characteristic alpha-herpesvirus particles matching the size and morphology of CvHV2 were identified by transmission electron microscopy in the conjunctival tissue. The quantification of viral particles by qPCR revealed high copy numbers of viral DNA in all CvHV2 inoculated eyes, but also in the non-inoculated eyes of the same animals. The histopathology of eye tissues obtained from the CvHV2 inoculated reindeer and the lack of inflammation from bacterial infection, together with the detection of CvHV2 DNA in swabs from the inoculated and non-inoculated eyes of the same animals, verified that CvHV2 was the primary cause of the observed histopathological changes. Full article
(This article belongs to the Special Issue Animal and Wildlife Viruses)
Show Figures

Figure 1

Back to TopTop