Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = semi-active heave compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 34170 KiB  
Article
Navigating ALICE: Advancements in Deployable Docking and Precision Detection for AUV Operations
by Yevgeni Gutnik, Nir Zagdanski, Sharon Farber, Tali Treibitz and Morel Groper
Robotics 2025, 14(1), 5; https://doi.org/10.3390/robotics14010005 - 31 Dec 2024
Cited by 2 | Viewed by 1653
Abstract
Autonomous Underwater Vehicles (AUVs) operate independently using onboard batteries and data storage, necessitating periodic recovery for battery recharging and data transfer. Traditional surface-based launch and recovery (L&R) operations pose significant risks to personnel and equipment, particularly in adverse weather conditions. Subsurface docking stations [...] Read more.
Autonomous Underwater Vehicles (AUVs) operate independently using onboard batteries and data storage, necessitating periodic recovery for battery recharging and data transfer. Traditional surface-based launch and recovery (L&R) operations pose significant risks to personnel and equipment, particularly in adverse weather conditions. Subsurface docking stations provide a safer alternative but often involve complex fixed installations and costly acoustic positioning systems. This work introduces a comprehensive docking solution featuring the following two key innovations: (1) a novel deployable docking station (DDS) designed for rapid deployment from vessels of opportunity, operating without active acoustic transmitters; and (2) an innovative sensor fusion approach that combines the AUV’s onboard forward-looking sonar and camera data. The DDS comprises a semi-submersible protective frame and a subsurface, heave-compensated docking component equipped with backlit visual markers, an electromagnetic (EM) beacon, and an EM lifting device. This adaptable design is suitable for temporary installations and in acoustically sensitive or covert operations. The positioning and guidance system employs a multi-sensor approach, integrating range and azimuth data from the sonar with elevation data from the vision camera to achieve precise 3D positioning and robust navigation in varying underwater conditions. This paper details the design considerations and integration of the AUV system and the docking station, highlighting their innovative features. The proposed method was validated through software-in-the-loop simulations, controlled seawater pool experiments, and preliminary open-sea trials, including several docking attempts. While further sea trials are planned, current results demonstrate the potential of this solution to enhance AUV operational capabilities in challenging underwater environments while reducing deployment complexity and operational costs. Full article
(This article belongs to the Special Issue Navigation Systems of Autonomous Underwater and Surface Vehicles)
Show Figures

Figure 1

20 pages, 7325 KiB  
Article
Semi-Active Heave Compensation for a 600-Meter Hydraulic Salvaging Claw System with Ship Motion Prediction via LSTM Neural Networks
by Fengrui Zhang, Dayong Ning, Jiaoyi Hou, Hongwei Du, Hao Tian, Kang Zhang and Yongjun Gong
J. Mar. Sci. Eng. 2023, 11(5), 998; https://doi.org/10.3390/jmse11050998 - 8 May 2023
Cited by 8 | Viewed by 2480
Abstract
Efficiently salvaging shipwrecks is of the utmost importance for safeguarding shipping safety and preserving the marine ecosystem. However, traditional methods find it difficult to salvage shipwrecks in deep water. This article presents a novel salvage technology that involves multiple hydraulic claws for directly [...] Read more.
Efficiently salvaging shipwrecks is of the utmost importance for safeguarding shipping safety and preserving the marine ecosystem. However, traditional methods find it difficult to salvage shipwrecks in deep water. This article presents a novel salvage technology that involves multiple hydraulic claws for directly catching and lifting a 2500-ton shipwreck at 600 m depth. To ensure lifting stability, a semi-active heave compensation (SAHC) system was employed for each lifter to mitigate the effects of sea waves. However, the response delays arising from the hydraulic, control, and filtering systems resist the heave compensation performance. Predicting the barge motion to mitigate measuring and filtering delays and achieve leading compensation is necessary for the salvage. Therefore, a multivariate long short-term memory (LSTM) based neural network was trained to forecast the barge’s heave and pitch motions, exhibiting satisfactory results for the next 5 s. According to the results of numerical simulations, the proposed LSTM-based motion predictive SAHC system demonstrates remarkable effectiveness in compensating for shipwreck motion. Full article
(This article belongs to the Special Issue Technology and Equipment for Underwater Robots)
Show Figures

Figure 1

20 pages, 5329 KiB  
Article
Performance Improvement of a Hydraulic Active/Passive Heave Compensation Winch Using Semi Secondary Motor Control: Experimental and Numerical Verification
by Geir-Arne Moslått, Michael Rygaard Hansen and Damiano Padovani
Energies 2020, 13(10), 2671; https://doi.org/10.3390/en13102671 - 25 May 2020
Cited by 7 | Viewed by 4883
Abstract
In this paper, a newly developed controller for active heave compensated offshore cranes is compared with state-of-the-art control methods. The comparison is divided into a numerical part on stability margins as well as operational windows and an experimental validation of the expected performance [...] Read more.
In this paper, a newly developed controller for active heave compensated offshore cranes is compared with state-of-the-art control methods. The comparison is divided into a numerical part on stability margins as well as operational windows and an experimental validation of the expected performance improvement based on a full-scale testing on site with a crane rated to 250 metric tons. Such a crane represents the typical target for the new control method using a combination of active and passive hydraulic actuation on the main winch. The active hydraulic actuation is a hydrostatic transmission with variable-displacement pumps and variable-displacement motors. The new controller employs feedforward control of the motors’ displacement so that the window of operation is increased and, simultaneously, oscillations in the system are markedly reduced. Full article
(This article belongs to the Special Issue Intelligent Fluid Power Drive Technology)
Show Figures

Figure 1

Back to TopTop