Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = secondary organic carbon from α-pinene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1024 KiB  
Article
Contribution from Selected Organic Species to PM2.5 Aerosol during a Summer Field Campaign at K-Puszta, Hungary
by Willy Maenhaut, Xuguang Chi, Wan Wang, Jan Cafmeyer, Farhat Yasmeen, Reinhilde Vermeylen, Katarzyna Szmigielska, Ivan A. Janssens and Magda Claeys
Atmosphere 2017, 8(11), 221; https://doi.org/10.3390/atmos8110221 - 14 Nov 2017
Cited by 10 | Viewed by 4613
Abstract
A summer field campaign was conducted at the forested background site of K-puszta in Hungary. The main aim was to assess the contribution of terpene-derived particulate organic compounds to the PM2.5 organic carbon (OC) and of the secondary organic carbon (SOC) from [...] Read more.
A summer field campaign was conducted at the forested background site of K-puszta in Hungary. The main aim was to assess the contribution of terpene-derived particulate organic compounds to the PM2.5 organic carbon (OC) and of the secondary organic carbon (SOC) from α-pinene to the OC. The study lasted from 24 May to 29 June 2006; the first half the weather was cold, while the second half was warm. Separate daytime and night-time PM2.5 samples were collected with a high-volume sampler and the samples were analysed by several analytical techniques, including ion chromatography (IC) and liquid chromatography–mass spectrometry (LC/MS). The latter technique was used for measuring the terpene-derived species. Ancillary high time resolution measurements of volatile organic compounds (VOCs) were made with proton-transfer reaction–mass spectrometry. The temporal and diurnal variability of the particulate compounds and VOCs and interrelationships were examined. It was found that the monoterpenes and a number of terpene-derived particulate compounds, such as cis-pinic and cis-caric acid, exhibited a strong day/night difference during the warm period, with about 10 times higher levels during the night-time. During the warm period, the IC compounds and LC/MS compounds accounted, on average, for 3.1% and 2.0%, respectively, of the OC, whereas the contribution of SOC from α-pinene to the OC was estimated at a minimum of 7.1%. Full article
(This article belongs to the Special Issue Carbonaceous Aerosols in Atmosphere)
Show Figures

Figure 1

Back to TopTop