Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = second-order observer (SOB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11061 KB  
Article
Integrated Sliding Mode Control for Permanent Magnet Synchronous Motor Drives Based on Second-Order Disturbance Observer and Low-Pass Filter
by Tran Thanh Tuyen, Jian Yang, Liqing Liao and Jingyang Zhou
Electronics 2025, 14(7), 1466; https://doi.org/10.3390/electronics14071466 - 5 Apr 2025
Viewed by 842
Abstract
This article presents an improved control strategy based on the traditional sliding-mode controller (SMC), integrated with a generalized higher-order disturbance observer (DOB), to enhance the speed regulation of permanent magnet synchronous motors (PMSMs) during operation. The proposed method is mitigated and employed to [...] Read more.
This article presents an improved control strategy based on the traditional sliding-mode controller (SMC), integrated with a generalized higher-order disturbance observer (DOB), to enhance the speed regulation of permanent magnet synchronous motors (PMSMs) during operation. The proposed method is mitigated and employed to smooth system disturbances by utilizing the disturbance observer (DOB) in conjunction with a low-pass filter (LPF). The low-pass filter is employed to smooth the q-axis current component and reduce speed oscillations. Initially, the paper builds upon the conventional control law and introduces a more optimized approach. The stability of the control strategy is then analyzed using Lyapunov stability theory. Different sliding surfaces are compared to develop the proposed SMC. Finally, the novel control method is introduced by integrating the DOB with the LPF. This approach results in improved speed stability and enhanced adaptability compared to traditional SMC techniques. Simulation and experimental results demonstrate that the proposed control algorithm outperforms traditional methods, particularly in terms of the dynamic response and disturbance rejection. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

Back to TopTop