Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rock-socketed concrete-filled steel tube piles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10001 KiB  
Article
Influential Mechanisms of Roughness on the Cyclic Shearing Behavior of the Interfaces Between Crushed Mudstone and Steel-Cased Rock-Socketed Piles
by Yue Liang, Jianlu Zhang, Bin Xu, Zeyu Liu, Lei Dai and Kui Wang
Buildings 2025, 15(1), 141; https://doi.org/10.3390/buildings15010141 - 5 Jan 2025
Viewed by 1276
Abstract
In the waterway construction projects of the upper reaches of the Yangtze River, crushed mudstone particles are widely used to backfill the foundations of rock-socketed concrete-filled steel tube (RSCFST) piles, a structure widely adopted in port constructions. In these projects, the steel–mudstone interfaces [...] Read more.
In the waterway construction projects of the upper reaches of the Yangtze River, crushed mudstone particles are widely used to backfill the foundations of rock-socketed concrete-filled steel tube (RSCFST) piles, a structure widely adopted in port constructions. In these projects, the steel–mudstone interfaces experience complex loading conditions, and the surface profile tends to vary within certain ranges during construction and operation. The changes in boundary conditions and material profile significantly impact the bearing performance of these piles when subjected to cyclic loads, such as ship impacts, water level fluctuations, and wave-induced loads. Therefore, it is necessary to investigate the shear characteristics of the RSCFST pile–soil interface under cyclic vertical loading, particularly in relation to varying deformation levels in the steel casing’s outer profile. In this study, a series of cyclic direct shear tests are carried out to investigate the influential mechanisms of roughness on the cyclic behavior of RSCFST pile–soil interfaces. The impacts of roughness on shear stress, shear stiffness, damping ratio, normal stress, and particle breakage ratio are discussed separately and can be summarized as follows: (1) During the initial phase of cyclic shearing, increased roughness correlates with higher interfacial shear strength and anisotropy, but also exacerbates interfacial particle breakage. Consequently, the sample undergoes more significant shear contraction, leading to reduced interfacial shear strength and anisotropy in the later stages. (2) The damping ratio of the rough interface exhibits an initial increase followed by a decrease, while the smooth interface demonstrates the exact opposite trend. The variation in damping ratio characteristics corresponds to the transition from soil–structure to soil–soil interfacial shearing. (3) Shear contraction is more pronounced in rough interface samples compared to the smooth interface, indicating that particle breakage has a greater impact on soil shear contraction compared to densification. Full article
(This article belongs to the Special Issue Structural Mechanics Analysis of Soil-Structure Interaction)
Show Figures

Figure 1

12 pages, 41993 KiB  
Article
Experimental Study on the Bearing Performance of Rock-Socketed Concrete-Filled Steel Tube Piles under Horizontal Cyclic Loading
by Mingwei Liu, Fayou Wu, Erdi Abi, Linjian Wu, Yafeng Han, Nirui Chen and Jue Chen
J. Mar. Sci. Eng. 2023, 11(4), 788; https://doi.org/10.3390/jmse11040788 - 5 Apr 2023
Cited by 2 | Viewed by 2344
Abstract
Rock-socketed concrete-filled steel tube piles (RSCFSTs), which have been widely used in harbors, bridges, and offshore wind turbines, were exposed to horizontal cyclic loading during service and suffered fatigue damage. For the RSCFSTs, longitudinal steel bars were welded to the inner wall of [...] Read more.
Rock-socketed concrete-filled steel tube piles (RSCFSTs), which have been widely used in harbors, bridges, and offshore wind turbines, were exposed to horizontal cyclic loading during service and suffered fatigue damage. For the RSCFSTs, longitudinal steel bars were welded to the inner wall of the steel tube to enhance the bonding strength of the steel tube and concrete core interface. It is essential to research the bearing performance of RSCFSTs like this, under horizontal cyclic loading. In this paper, cyclic loading tests of RSCFSTs under horizontal loading were carried out. The failure patterns of RSCFSTs during the destabilization process were generalized, and the lateral displacement development law of RSCFSTs was analyzed. The interfacial bonding characteristics between the steel tube and concrete core during the test were also discussed. Results showed that the horizontal bearing capacity of RSCFSTs decreases nonlinearly with the increase in the equal amplitude of load, and the development process of the lateral displacement-cycle number curve was divided into three phases: (I) rapid growth period, (II) fatigue growth period, and (III) sharp growth period. The larger the horizontal load was, the faster the lateral displacement entered the fatigue growth period. The duration of the rapid growth period and fatigue damage period accounts for about 90% of the total life of RSCFSTs. The stiffening form of the longitudinal steel bars welded to the inner wall of the steel tube can realize the synergistic force between the upper steel tube and the concrete core of RSCFSTs, which accounts for about 7/10 of the length of RSCFSTs. The depth of the steel tube, foundation stiffness, and bonding performance between the steel tube and the concrete core were the key factors that affected the horizontal bearing performance of RSCFSTs. Finally, some constructive suggestions are proposed for the design of RSCFSTs, including increasing steel tube embedded depth, adding a sniffer bar between the steel tube and concrete interface, etc. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop