Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ring ionospheric trough

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2031 KiB  
Article
Structure of the High-Latitude Noon Ionosphere of the Southern Hemisphere
by Alexander Karpachev
Remote Sens. 2023, 15(14), 3649; https://doi.org/10.3390/rs15143649 - 21 Jul 2023
Cited by 3 | Viewed by 1287
Abstract
The structure of the winter noon ionosphere of the southern hemisphere was studied. This structure includes the dayside cusp, associated high-latitude ionospheric trough (HLT), main ionospheric trough (MIT), electron density (Ne) peak at latitudes about 70°, mid-latitude ring ionospheric trough (RIT), and low-latitude [...] Read more.
The structure of the winter noon ionosphere of the southern hemisphere was studied. This structure includes the dayside cusp, associated high-latitude ionospheric trough (HLT), main ionospheric trough (MIT), electron density (Ne) peak at latitudes about 70°, mid-latitude ring ionospheric trough (RIT), and low-latitude quasi-trough. Data from the CHAMP satellite in the southern hemisphere for quiet geomagnetic conditions under high solar activity were selected for analysis. The DMSP satellite data and a model of auroral diffuse precipitation were also used. This model represents two zones of auroral diffuse precipitation on the equatorward and poleward edges of the auroral oval. It is shown that the situation in the winter noon ionosphere of the southern hemisphere depends cardinally on longitude. At sunlit longitudes, only the HLT is observed, and MIT is formed in the shadow region. At intermediate longitudes, both troughs can be observed and, therefore, there is a problem of their separation. The positions of all structures of the ionosphere depend on the longitude; in particular, the positions of the daytime MIT are changed by 6°−7°. At latitudes of the dayside cusp, both the peak and the minimum of Ne can be observed. A high and narrow peak of Ne is regularly recorded in the CHAMP data at latitudes of the equatorward zone of diffuse precipitation (68°−72°). In the shadow region, this peak forms the MIT poleward wall, and at sunlit longitudes a quasi-trough equatorward of this peak is sometimes observed. The RIT is rarely formed during the day, only at the American and Atlantic longitudes. Full article
Show Figures

Figure 1

15 pages, 1742 KiB  
Article
Advanced Classification of Ionospheric Troughs in the Morning and Evening Conditions
by Alexander Karpachev
Remote Sens. 2022, 14(16), 4072; https://doi.org/10.3390/rs14164072 - 20 Aug 2022
Cited by 8 | Viewed by 1709
Abstract
The separation and classification of ionospheric troughs in the winter evening and morning ionospheres of the southern hemisphere were performed using CHAMP satellite data for high solar activity (2000–2002). In the high-latitude ionosphere, the main ionospheric trough (MIT) was separated from the high-latitude [...] Read more.
The separation and classification of ionospheric troughs in the winter evening and morning ionospheres of the southern hemisphere were performed using CHAMP satellite data for high solar activity (2000–2002). In the high-latitude ionosphere, the main ionospheric trough (MIT) was separated from the high-latitude trough (HLT). The separation was carried out using a thorough analysis of all the characteristic structures of the ionosphere in the framework of the auroral diffuse particle precipitation model. Two types of high-latitude troughs were identified: (1) a wide trough associated with zone II of diffuse precipitation on the poleward edge of the auroral oval and (2) a narrow trough of ionization, which is presumably associated with an electric field action. The poleward wall of MIT is as ever formed by diffuse precipitation in zone I on the equatorward edge of the auroral oval. The HLT and MIT separation is most difficult at the longitudes of the eastern hemisphere, where all structures are located at the highest latitudes and partially overlap. In the mid-latitude ionosphere, all the characteristic structures of the ionosphere were also identified and considered. MIT was separated from the ring ionospheric trough (RIT), which is formed by the decay processes of the magnetospheric ring current. The separation of MIT and RIT was performed based on an analysis of the prehistory of all geomagnetic disturbances during the period under study. In addition to the RIT, a decrease in the electron density equatorward of the MIT was found to be often formed at the America–Atlantic longitudes, which masks the MIT minimum. For completeness, all cases of a clearly defined polar cavity are also presented. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing)
Show Figures

Figure 1

15 pages, 2115 KiB  
Article
Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe Geomagnetic Storms
by Alexander Karpachev
Remote Sens. 2021, 13(3), 534; https://doi.org/10.3390/rs13030534 - 2 Feb 2021
Cited by 4 | Viewed by 4238
Abstract
The dynamics of ionospheric troughs during intense geomagnetic storms is considered in this paper. The study is based on electron density measurements at CHAMP satellite altitudes of 405–465 km in the period from 2000 to 2002. A detailed analysis of four storms with [...] Read more.
The dynamics of ionospheric troughs during intense geomagnetic storms is considered in this paper. The study is based on electron density measurements at CHAMP satellite altitudes of 405–465 km in the period from 2000 to 2002. A detailed analysis of four storms with Kp from 5+ to 9− is presented. Three troughs were identified: sub-auroral, mid-latitude, and low-latitude. The sub-auroral trough is usually defined as the main ionospheric trough (MIT). The mid-latitude trough is observed equatorward of the MIT and is associated with the magnetospheric ring current; therefore, it is named the ring ionospheric trough (RIT). The RIT appears at the beginning of the storm recovery phase at geomagnetic latitudes of 40–45° GMLat (L = 1.75–2.0) and exists, for a long time, at the late stage of the recovery phase at latitudes of the residual ring current 50–55° GMLat (L ~ 2.5–3.0). The low-latitude trough (LLT) is discovered for the first time. It forms only during great storms at the latitudes of the internal radiation belt (IRB), 34–45° GMLat (L = 1.45–2.0). The LLT’s lowest latitude of 34° GMLat was recorded in the night sector (2–3 LT). The occurrence probability and position of the RIT and LLT depend on the hemisphere and longitude. Full article
Show Figures

Graphical abstract

Back to TopTop