Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = rigid PVC plastics (R-PVC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3276 KB  
Article
Migration Mechanism of Chlorine during Hydrothermal Treatment of Rigid PVC Plastics
by Ling Zhang, Qing Wang, Faxing Xu and Zhenye Wang
Materials 2023, 16(17), 5840; https://doi.org/10.3390/ma16175840 - 25 Aug 2023
Cited by 8 | Viewed by 2387
Abstract
Rigid PVC plastics (R-PVC) contain large amounts of chlorine, and improper disposal can adversely affect the environment. Nevertheless, there is still a lack of sufficient studies on hydrothermal treatment (HTT) for the efficient dechlorination of R-PVC. To investigate the migration mechanism of chlorine [...] Read more.
Rigid PVC plastics (R-PVC) contain large amounts of chlorine, and improper disposal can adversely affect the environment. Nevertheless, there is still a lack of sufficient studies on hydrothermal treatment (HTT) for the efficient dechlorination of R-PVC. To investigate the migration mechanism of chlorine during the HTT of R-PVC, R-PVC is treated with HTT at temperatures ranging from 220 °C to 300 °C for 30 min to 90 min. Hydrochar is characterized via Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy. The results revealed that the hydrothermal temperature is the key factor that affects the dechlorination of R-PVC. Dramatic dechlorination occurs at temperatures ranging from 240 °C to 260 °C, and the dechlorination efficiency increases with the increase in the hydrothermal temperature. The main mechanism for the dechlorination of R-PVC involves the nucleophilic substitution of chlorine by -OH. CaCO3 can absorb HCl released by R-PVC and hinder the autocatalytic degradation of R-PVC; hence, the dechlorination behavior of R-PVC is different from that of pure PVC resins. Based on these results, a possible degradation process for R-PVC is proposed. This study suggests that HTT technology can be utilized to convert organochlorines in R-PVC to calcium chloride, achieving the simultaneous dechlorination of R-PVC and utilization of products. Full article
Show Figures

Figure 1

Back to TopTop