Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rice flower carp

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2657 KiB  
Article
Toxicity and Safety Assessment of Key Pesticides Used in Rice Fields on Rice Flower Carp (Procypris merus)
by Qianxue Shao, Yongming Ruan, Ru Liang, Ruixin Jin, Zhixi Jin, Lin Xie, Yongqing Chi, Jiaojiao Xia and Pingyang Zhu
Fishes 2025, 10(6), 248; https://doi.org/10.3390/fishes10060248 - 25 May 2025
Viewed by 371
Abstract
Integrated rice–fish farming, crucial for sustainable agriculture, relies on the judicious use of pesticide. This study evaluates the toxicity of six common rice-field pesticides on Procypris merus (rice flower carp), a key species in these systems. We conducted acute and chronic toxicity tests, [...] Read more.
Integrated rice–fish farming, crucial for sustainable agriculture, relies on the judicious use of pesticide. This study evaluates the toxicity of six common rice-field pesticides on Procypris merus (rice flower carp), a key species in these systems. We conducted acute and chronic toxicity tests, assessing survival, growth, oxidative stress (SOD, CAT, MDA, 8-OHdG), and neurotoxicity (AChE). Results revealed a spectrum of toxicity: abamectin and trifloxystrobin were highly toxic; pretilachlor was moderately so; and glufosinate-ammonium, triflumezopyrim, and thiazole zinc were low. Notably, triflumezopyrim induced significant oxidative stress and DNA damage, while all three low-toxicity pesticides inhibited AChE activity, indicating potential neurotoxicity. Despite these effects, all observed toxicities were reversible within 7–14 days. Considering that the tested concentrations exceeded typical field application rates, glufosinate-ammonium, triflumezopyrim, and thiazole zinc are deemed relatively safe for P. merus at recommended dosages. Our findings provide critical insights for optimizing pesticide selection in rice–fish farming, balancing pest control with ecological safety, thereby informing sustainable agricultural practices. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

11 pages, 4115 KiB  
Article
ROS-Induced Autophagy of Skeletal Muscle Confers Resistance of Rice Flower Carp (Cyprinus carpio) to Short-Term Fasting
by Jia Cheng, Junhan Luo, Ziyang Xu, Zhouying Liu, Lingsheng Bao and Liangyi Xue
Genes 2024, 15(7), 840; https://doi.org/10.3390/genes15070840 - 26 Jun 2024
Cited by 3 | Viewed by 1872
Abstract
Starvation is one of the main stresses for fish due to food shortage, the evasion of predators, and intraspecific competition. This research evaluated the impact of brief fasting periods on reactive oxygen species (ROS) levels, antioxidant response, mRNA expression of antioxidants, autophagy-related signaling [...] Read more.
Starvation is one of the main stresses for fish due to food shortage, the evasion of predators, and intraspecific competition. This research evaluated the impact of brief fasting periods on reactive oxygen species (ROS) levels, antioxidant response, mRNA expression of antioxidants, autophagy-related signaling genes, and autophagosome development in the muscle tissue of rice flower carp. Following a three-day fasting period, the levels of ROS and MDA rose. Additionally, after 3 d of fasting, there was a notable upregulation of NRF2 and significant increases in the levels of GSH and the activities of enzymes such as SOD, CAT, GST, GR, and GPX, while the expression of the autophagy marker gene LC3B did not change (p < 0.05). After 7 d of fasting, the content of the ROS, the activity of SOD and GR, and the GSH content reached the maximum (p < 0.05). Concurrently, there was a significant rise in the quantity of autophagosomes. An RT-qPCR analysis revealed that seven d of starvation significantly elevated the mRNA expression of genes associated with the initiation and expansion of autophagosome membranes, vesicle recycling, and cargo recruitment, including ULK1, BECLIN1, LC3B, ATG3, ATG4B, ATG4C, ATG5, ATG9, and P62. After feeding resumed for 3 d, the mRNA level of BECLIN1, ATG3, ATG4B, ATG4C, ATG5, LC3B, and P62 still remained at a high level. The LC3II protein reached its highest level. All autophagy-related gene expression decreased in the 7-day resumed feeding group. Our data implied that short-term fasting can cause oxidative stress and disrupt the antioxidant system first and then induce autophagy in the muscles of rice flower carp. These findings shed light on how fasting affects muscle homeostasis in fish. ROS-induced autophagy of the skeletal muscle may confer the resistance of rice flower carp to short-term fasting. Full article
(This article belongs to the Special Issue Fisheries and Aquaculture Gene Expression)
Show Figures

Figure 1

Back to TopTop