Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = rice canopy height and density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7097 KiB  
Article
Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data
by Linlong Jing, Xinhua Wei, Qi Song and Fei Wang
Sensors 2023, 23(19), 8334; https://doi.org/10.3390/s23198334 - 9 Oct 2023
Cited by 7 | Viewed by 2527
Abstract
Rice canopy height and density are directly usable crop phenotypic traits for the direct estimation of crop biomass. Therefore, it is crucial to rapidly and accurately estimate these phenotypic parameters. To achieve the non-destructive detection and estimation of these essential parameters in rice, [...] Read more.
Rice canopy height and density are directly usable crop phenotypic traits for the direct estimation of crop biomass. Therefore, it is crucial to rapidly and accurately estimate these phenotypic parameters. To achieve the non-destructive detection and estimation of these essential parameters in rice, a platform based on LiDAR (Light Detection and Ranging) point cloud data for rice phenotypic parameter detection was established. Data collection of rice canopy layers was performed across multiple plots. The LiDAR-detected canopy-top point clouds were selected using a method based on the highest percentile, and a surface model of the canopy was calculated. The canopy height estimation was the difference between the ground elevation and the percentile value. To determine the optimal percentile that would define the rice canopy top, testing was conducted incrementally at percentile values from 0.8 to 1, with increments of 0.005. The optimal percentile value was found to be 0.975. The root mean square error (RMSE) between the LiDAR-detected and manually measured canopy heights for each case was calculated. The prediction model based on canopy height (R2 = 0.941, RMSE = 0.019) exhibited a strong correlation with the actual canopy height. Linear regression analysis was conducted between the gap fractions of different plots, and the average rice canopy Leaf Area Index (LAI) was manually detected. Prediction models of canopy LAIs based on ground return counts (R2 = 0.24, RMSE = 0.1) and ground return intensity (R2 = 0.28, RMSE = 0.09) showed strong correlations but had lower correlations with rice canopy LAIs. Regression analysis was performed between LiDAR-detected canopy heights and manually measured rice canopy LAIs. The results thereof indicated that the prediction model based on canopy height (R2 = 0.77, RMSE = 0.03) was more accurate. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

Back to TopTop