Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rhizostome scyphozoan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1172 KiB  
Article
The Effects of Heat Stress on the Physiology and Mortality of the Rhizostome Upside-Down Jellyfish Cassiopea xamachana—Observations Throughout the Life Cycle
by William K. Fitt, Dietrich K. Hofmann, Aki H. Ohdera, Dustin W. Kemp and André C. Morandini
Oceans 2025, 6(1), 6; https://doi.org/10.3390/oceans6010006 - 14 Jan 2025
Viewed by 1296
Abstract
This study was designed to investigate the impact of heat stress on the physiological changes and mortality rates of different life stages of the rhizostome jellyfish species Cassiopea xamachana, including planula larvae, scyphistomae (polyps), and medusae. Both larval and scyphistoma stages of [...] Read more.
This study was designed to investigate the impact of heat stress on the physiological changes and mortality rates of different life stages of the rhizostome jellyfish species Cassiopea xamachana, including planula larvae, scyphistomae (polyps), and medusae. Both larval and scyphistoma stages of C. xamachana are relatively tolerant to high temperatures, but both experience nearly 100% mortality at 36 °C. Increasing temperatures also induced stage-specific effects. Settlement rates of artificially induced larvae were near 100% at lower temperatures but decreased at 34–36 °C; larvae were dead at 36 °C. When scyphistomae of C. xamachana were subjected to a gradual increase in temperature from 28 to 38 °C, polyp size declined steadily in starved animals, with animals showing clear signs of temperature stress between 35 and 36 °C. Small medusae of C. xamachana pulsed more than larger medusae and tended to have peak pulse rates at higher temperatures (~35 °C) compared to larger medusae (~29–33 °C), though the latter was not significant. At a temperature of 39 °C, all the medusae exhibited signs of heat stress, including pulsing erratically (generally lower) rather than steady rhythmic pulsations, releasing copious amounts of mucus, and having withdrawn oral arms. Temperature data presented here, and in the literature, show that pulsing C. xamachana medusae exhibit a bell-shaped curve, with temperatures over 38 °C being detrimental and becoming lethal at 40 °C. Based on the findings of this study, it is proposed that the medusa stage of C. xamachana has a higher tolerance for elevated temperatures compared to both the larvae and the polyps. Predictions of global climate change indicate that populations of C. xamachana will likely face longer and hotter summer periods, leading to increased population sizes. However, higher temperatures pose a greater risk to the survival of the species as they increase mortality in the polyp and larval stages compared to the medusa stage. Full article
Show Figures

Figure 1

19 pages, 3201 KiB  
Article
Respiration Rates, Metabolic Demands and Feeding of Ephyrae and Young Medusae of the Rhizostome Rhopilema nomadica
by Zafrir Kuplik, Dani Kerem and Dror L. Angel
Diversity 2021, 13(7), 320; https://doi.org/10.3390/d13070320 - 14 Jul 2021
Cited by 5 | Viewed by 4058
Abstract
Jellyfish (cnidarians and ctenophores) affect the marine food web through high feeding rates and feeding efficiency, but in contrast to their great importance in the ecosystem, our knowledge of their dietary requirements is limited. Here we present the results of respiratory and feeding [...] Read more.
Jellyfish (cnidarians and ctenophores) affect the marine food web through high feeding rates and feeding efficiency, but in contrast to their great importance in the ecosystem, our knowledge of their dietary requirements is limited. Here we present the results of respiratory and feeding trials of the rhizostome Rhopilema nomadica, the dominant scyphozoan in the waters of the Eastern Mediterranean, which often establishes massive swarms, mainly in the summer months. Through multiple measurements of oxygen demand in R. nomadica at bell diameters of 3–49 mm, we were able to assess its minimum energetic requirements. These, and the results of the feeding trials on individuals of the same bell diameter range, show that R. nomadica is a very efficient predator. When presented with prey concentrations of 100 prey items per liter, a single hourly feeding session provided between 1.15 and 3 times the estimated daily basal carbon requirement. Our findings suggest that R. nomadica is well adapted to its environment, the hyperoligotrophic waters of the eastern Mediterranean, able to efficiently exploit patches of plankton, possibly at rates even higher than what we observed under laboratory conditions. Full article
(This article belongs to the Special Issue Patterns and Ecology of Jellyfish in Marine Environment)
Show Figures

Figure 1

Back to TopTop