Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = reverse shock index (RSI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1076 KiB  
Article
The Reverse Shock Index Multiplied by Glasgow Coma Scale Score (rSIG) and Prediction of Mortality Outcome in Adult Trauma Patients: A Cross-Sectional Analysis Based on Registered Trauma Data
by Shao-Chun Wu, Cheng-Shyuan Rau, Spencer C. H. Kuo, Peng-Chen Chien, Hsiao-Yun Hsieh and Ching-Hua Hsieh
Int. J. Environ. Res. Public Health 2018, 15(11), 2346; https://doi.org/10.3390/ijerph15112346 - 24 Oct 2018
Cited by 36 | Viewed by 5159
Abstract
The reverse shock index (rSI) multiplied by Glasgow Coma Scale (GCS) score (rSIG), calculated by multiplying the GCS score with systolic blood pressure (SBP)/hear rate (HR), was proposed to be a reliable triage tool for identifying risk of in-hospital mortality in trauma patients. [...] Read more.
The reverse shock index (rSI) multiplied by Glasgow Coma Scale (GCS) score (rSIG), calculated by multiplying the GCS score with systolic blood pressure (SBP)/hear rate (HR), was proposed to be a reliable triage tool for identifying risk of in-hospital mortality in trauma patients. This study was designed to externally validate the accuracy of the rSIG in the prediction of mortality in our cohort of trauma patients, in comparison with those that were predicted by the Revised Trauma Score (RTS), shock index (SI), and Trauma and Injury Severity Score (TRISS). Adult trauma patients aged ≥20 years who were admitted to the hospital from 1 January 2009 to 31 December 2017, were included in this study. The rSIG, RTS, and SI were calculated according to the initial vital signs and GCS scores of patients upon arrival at the emergency department (ED). The end-point of primary outcome is in-hospital mortality. Discriminative power of each score to predict mortality was measured using area under the curve (AUC) by plotting the receiver operating characteristic (ROC) curve for 18,750 adult trauma patients, comprising 2438 patients with isolated head injury (only head Abbreviated Injury Scale (AIS) ≥ 2) and 16,312 without head injury (head AIS ≤ 1). The predictive accuracy of rSIG was significantly lower than that of RTS in all trauma patients (AUC 0.83 vs. AUC 0.85, p = 0.02) and in patients with isolated head injury (AUC 0.82 vs. AUC 0.85, p = 0.02). For patients without head injury, no difference was observed in the predictive accuracy between rSIG and RTS (AUC 0.83 vs. AUC 0.83, p = 0.97). Based on the cutoff value of 14.0, the rSIG can predict the probability of dying in trauma patients without head injury with a sensitivity of 61.5% and specificity of 94.5%. The predictive accuracy of both rSIG and RTS is significantly poorer than that of TRISS, in all trauma patients (AUC 0.93) or in patients with (AUC 0.89) and without head injury (AUC 0.92). In addition, SI had the significantly worse predictive accuracy than all of the other three models in all trauma patients (AUC 0.57), and the patients with (AUC 0.53) or without (AUC 0.63) head injury. This study revealed that rSIG had a significantly higher predictive accuracy of mortality than SI in all of the studied population but a lower predictive accuracy of mortality than RTS in all adult trauma patients and in adult patients with isolated head injury. In addition, in the adult patients without head injury, rSIG had a similar performance as RTS to the predictive risk of mortality of the patients. Full article
Show Figures

Figure 1

18 pages, 916 KiB  
Article
Systolic Blood Pressure Lower than Heart Rate upon Arrival at and Departure from the Emergency Department Indicates a Poor Outcome for Adult Trauma Patients
by Wei-Hung Lai, Shao-Chun Wu, Cheng-Shyuan Rau, Pao-Jen Kuo, Shiun-Yuan Hsu, Yi-Chun Chen, Hsiao-Yun Hsieh and Ching-Hua Hsieh
Int. J. Environ. Res. Public Health 2016, 13(6), 528; https://doi.org/10.3390/ijerph13060528 - 25 May 2016
Cited by 23 | Viewed by 4743
Abstract
Background: Hemorrhage is a leading cause of preventable trauma death. In this study, we used the reverse shock index (RSI), a ratio of systolic blood pressure (SBP) to heart rate (HR), to evaluate the hemodynamic stability of trauma patients. As an SBP lower [...] Read more.
Background: Hemorrhage is a leading cause of preventable trauma death. In this study, we used the reverse shock index (RSI), a ratio of systolic blood pressure (SBP) to heart rate (HR), to evaluate the hemodynamic stability of trauma patients. As an SBP lower than the HR (RSI < 1) may indicate hemodynamic instability, the objective of this study was to assess the associated complications in trauma patients with an RSI < 1 upon arrival at the emergency department (ED) (indicated as (A)RSI) and at the time of departure from the ED (indicated as (L)RSI) to the operative room or for admission. Methods: Data obtained from all 16,548 hospitalized patients recorded in the trauma registry system at a Level I trauma center between January 2009 and December 2013 were retrospectively reviewed. A total of 10,234 adult trauma patients aged ≥20 were enrolled and subsequently divided into four groups: Group I, (A)RSI ≥ 1 and (L)RSI ≥ 1 (n = 9827); Group II, (A)RSI ≥ 1 and (L)RSI < 1 (n = 76); Group III, (A)RSI < 1 and (L)RSI ≥ 1 (n = 251); and Group IV, (A)RSI < 1 and (L)RSI < 1 (n = 80). Pearson’s χ2 test, Fisher’s exact test, or independent Student’s t-test was conducted to compare trauma patients in Groups II, III, and IV with those in Group I. Results: Patients in Groups II, III, and IV had a higher injury severity score and underwent a higher number of procedures, including intubation, chest tube insertion, and blood transfusion, than Group I patients. Additionally, patients of these groups had increased hospital length of stay (16.3 days, 14.9 days, and 22.0 days, respectively), proportion of patients admitted to the intensive care unit (ICU) (48.7%, 43.0%, and 62.5%, respectively), and in-hospital mortality (19.7%, 7.6%, and 27.5%, respectively). Although the trauma patients who had a SBP < 90 mmHg either upon arrival at or departure from the ED also present a more severe injury and poor outcome, those patients who had a SBP ≥ 90 mmHg but an RSI < 1 had a more severe injury and poor outcome than those patients who had a SBP ≥ 90 mmHg and an RSI ≥ 1. Conclusions: SBP lower than heart rate (RSI < 1) either upon arrival at or departure from the ED may indicate a detrimental sign of poor outcome in adult trauma patients even in the absence of noted hypotension. Full article
Show Figures

Figure 1

12 pages, 522 KiB  
Article
Using the Reverse Shock Index at the Injury Scene and in the Emergency Department to Identify High-Risk Patients: A Cross-Sectional Retrospective Study
by Wei-Hung Lai, Cheng-Shyuan Rau, Shiun-Yuan Hsu, Shao-Chun Wu, Pao-Jen Kuo, Hsiao-Yun Hsieh, Yi-Chun Chen and Ching-Hua Hsieh
Int. J. Environ. Res. Public Health 2016, 13(4), 357; https://doi.org/10.3390/ijerph13040357 - 24 Mar 2016
Cited by 22 | Viewed by 6644
Abstract
Background: The ratio of systolic blood pressure (SBP) to heart rate (HR), called the reverse shock index (RSI), is used to evaluate the hemodynamic stability of trauma patients. A SBP lower than the HR (RSI < 1) indicates the probability of hemodynamic [...] Read more.
Background: The ratio of systolic blood pressure (SBP) to heart rate (HR), called the reverse shock index (RSI), is used to evaluate the hemodynamic stability of trauma patients. A SBP lower than the HR (RSI < 1) indicates the probability of hemodynamic shock. The objective of this study was to evaluate whether the RSI as evaluated by emergency medical services (EMS) personnel at the injury scene (EMS RSI) and the physician in the emergency department (ED RSI) could be used as an additional variable to identify patients who are at high risk of more severe injury. Methods: Data obtained from all 16,548 patients added to the trauma registry system at a Level I trauma center between January 2009 and December 2013 were retrospectively reviewed. Only patients transferred by EMS were included in this study. A total of 3715 trauma patients were enrolled and subsequently divided into four groups: group I patients had an EMS RSI ≥1 and an ED RSI ≥1 (n = 3485); group II an EMS RSI ≥ 1 and an ED RSI < 1 (n = 85); group III an EMS RSI < 1 and an ED RSI ≥ 1 (n = 98); and group IV an EMS RSI < 1 and a ED RSI < 1 (n = 47). A Pearson’s χ2 test, Fisher’s exact test, or independent Student’s t-test was conducted to compare trauma patients in groups II, III, and IV with those in group I. Results: Group II and IV patients had a higher injury severity score, a higher incidence of commonly associated injuries, and underwent more procedures (including intubation, chest tube insertion, and blood transfusion in the ED) than patients in group I. Group II and IV patients were also more likely to receive a severe injury to the thoracoabdominal area. These patients also had worse outcomes regarding the length of stay in hospital and intensive care unit (ICU), the proportion of patients admitted to ICU, and in-hospital mortality. Group II patients had a higher adjusted odds ratio for mortality (5.8-times greater) than group I patients. Conclusions: Using an RSI < 1 as a threshold to evaluate the hemodynamic condition of the patients at the injury scene and upon arrival to the ED provides valid information regarding deteriorating outcomes for certain subgroups of patients in the ED setting. Particular attention and additional resources should be provided to patients with an EMS RSI ≥ 1 that deteriorates to an RSI < 1 upon arrival to the ED since a higher odds of mortality was found in these patients. Full article
Show Figures

Figure 1

Back to TopTop