Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = retinal ganglia cells (RGC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1576 KB  
Article
Intraocular Delivery of a Collagen Mimetic Peptide Repairs Retinal Ganglion Cell Axons in Chronic and Acute Injury Models
by Marcio Ribeiro, Nolan R. McGrady, Robert O. Baratta, Brian J. Del Buono, Eric Schlumpf and David J. Calkins
Int. J. Mol. Sci. 2022, 23(6), 2911; https://doi.org/10.3390/ijms23062911 - 8 Mar 2022
Cited by 13 | Viewed by 5206
Abstract
Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which [...] Read more.
Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which causes rapid axon degeneration from the site of injury. In each case, degeneration is irreversible, necessitating new therapeutics that protect, repair, and regenerate RGC axons. Recently, we demonstrated the reparative capacity of using collagen mimetic peptides (CMPs) to heal fragmented collagen in the neuronal extracellular milieu. This was an important step in the development of neuronal-based therapies since neurodegeneration involves matrix metalloproteinase (MMP)-mediated remodeling of the collagen-rich environment in which neurons and their axons exist. We found that intraocular delivery of a CMP comprising single-strand fractions of triple helix human type I collagen prevented early RGC axon dysfunction in an inducible glaucoma model. Additionally, CMPs also promoted neurite outgrowth from dorsal root ganglia, challenged in vitro by partial digestion of collagen. Here, we compared the ability of a CMP sequence to protect RGC axons in both inducible glaucoma and optic nerve crush. A three-week +40% elevation in IOP caused a 67% degradation in anterograde transport to the superior colliculus, the primary retinal projection target in rodents. We found that a single intravitreal injection of CMP during the period of IOP elevation significantly reduced this degradation. The same CMP delivered shortly after optic nerve crush promoted significant axonal recovery during the two-week period following injury. Together, these findings support a novel protective and reparative role for the use of CMPs in both chronic and acute conditions affecting the survival of RGC axons in the optic projection to the brain. Full article
Show Figures

Figure 1

16 pages, 8188 KB  
Article
A Novel Reporter Mouse Uncovers Endogenous Brn3b Expression
by Adam M. Miltner, Yesica Mercado-Ayon, Simranjeet K. Cheema, Pengfei Zhang, Robert J. Zawadzki and Anna La Torre
Int. J. Mol. Sci. 2019, 20(12), 2903; https://doi.org/10.3390/ijms20122903 - 14 Jun 2019
Cited by 7 | Viewed by 6330
Abstract
Brn3b (Pou4f2) is a class-4 POU domain transcription factor known to play central roles in the development of different neuronal populations of the Central Nervous System, including retinal ganglion cells (RGCs), the neurons that connect the retina with the visual centers [...] Read more.
Brn3b (Pou4f2) is a class-4 POU domain transcription factor known to play central roles in the development of different neuronal populations of the Central Nervous System, including retinal ganglion cells (RGCs), the neurons that connect the retina with the visual centers of the brain. Here, we have used CRISPR-based genetic engineering to generate a Brn3b-mCherry reporter mouse without altering the endogenous expression of Brn3b. In our mouse line, mCherry faithfully recapitulates normal Brn3b expression in the retina, the optic tracts, the midbrain tectum, and the trigeminal ganglia. The high sensitivity of mCherry also revealed novel expression of Brn3b in the neuroectodermal cells of the optic stalk during early stages of eye development. Importantly, the fluorescent intensity of Brn3b-mCherry in our reporter mice allows for noninvasive live imaging of RGCs using Scanning Laser Ophthalmoscopy (SLO), providing a novel tool for longitudinal monitoring of RGCs. Full article
(This article belongs to the Special Issue Retinal Ganglion Cells)
Show Figures

Figure 1

15 pages, 2102 KB  
Article
P3HT:Bebq2-Based Photovoltaic Device Enhances Differentiation of hiPSC-Derived Retinal Ganglion Cells
by Chih-Chen Hsu, Yi-Ying Lin, Tien-Chun Yang, Aliaksandr A. Yarmishyn, Tzu-Wei Lin, Yuh-Lih Chang, De-Kuang Hwang, Chien-Ying Wang, Yung-Yang Liu, Wen-Liang Lo, Chi-Hsien Peng, Shih-Jen Chen and Yi-Ping Yang
Int. J. Mol. Sci. 2019, 20(11), 2661; https://doi.org/10.3390/ijms20112661 - 30 May 2019
Cited by 9 | Viewed by 4188
Abstract
Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells [...] Read more.
Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells of the retina responsible for transduction of visual signals from the retina to the brain cortex, and is often degenerated in various blindness-causing retinal diseases. The organic photovoltaic materials such as poly-3-hexylthiophene (P3HT) can generate electric current upon illumination with light of the visible spectrum, and possesses several advantageous properties, including light weight, flexibility and high biocompatibility, which makes them a highly promising tool for electric stimulation of cells in vitro and in vivo. In this study, we tested the ability to generate photocurrent by several formulations of blend (bulk heterojunction) of P3HT (which is electron donor material) with several electron acceptor materials, including Alq3 and bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2). We found that the photovoltaic device based on bulk heterojunction of P3HT with Bebq2 could generate photocurrent when illuminated by both green laser and visible spectrum light. We tested the growth and differentiation capacity of human induced pluripotent stem cells (hiPSC)-derived RGCs when grown in interface with such photostimulated device, and found that they were significantly increased. The application of P3HT:Bebq2-formulation of photovoltaic device has a great potential for developments in retinal transplantation, nerve repair and tissue engineering approaches of treatment of retinal degeneration. Full article
Show Figures

Figure 1

Back to TopTop