Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = residue after extracting aluminum from CFA (REA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4531 KB  
Article
Mild Hydrothermal Synthesis of 11Å-TA from Alumina Extracted Coal Fly Ash and Its Application in Water Adsorption of Heavy Metal Ions (Cu(II) and Pb(II))
by Jingjie Yang, Hongjuan Sun, Tongjiang Peng, Li Zeng and Xin Zhou
Int. J. Environ. Res. Public Health 2022, 19(2), 616; https://doi.org/10.3390/ijerph19020616 - 6 Jan 2022
Cited by 6 | Viewed by 2511
Abstract
Non-biodegradable copper (Cu) and lead (Pb) contaminants in water are highly toxic and have series adverse effects. Therefore, it is very important to extract heavy metals from wastewater before it is discharged into the environment. Adsorption is a cost-effective alternative method for wastewater [...] Read more.
Non-biodegradable copper (Cu) and lead (Pb) contaminants in water are highly toxic and have series adverse effects. Therefore, it is very important to extract heavy metals from wastewater before it is discharged into the environment. Adsorption is a cost-effective alternative method for wastewater treatment. Choosing a low-cost adsorbent can help reduce the cost of adsorption. In this study, conversion of reside after extracting aluminum (REA) produced by sub-molten salt method transform high-alumina coal fly ash (CFA) into 11Å-tobermorite to adsorb Cu(II) and Pb(II) from aqueous solutions at room temperature. The synthesis of the adsorbent was confirmed using scanning electron microscope (SEM), X-ray diffractometer (XRD) and Brunauer–Emmett–Teller (BET) method surface analysis. To study the adsorption characteristics, factors such as initial Cu(II) and Pb(II) concentration, pH, contact time, adsorption characteristics and temperature were investigated in batch mode. The maximum adsorption capacity of Cu(II) and Pb(II) was 177.1 mg·g−1 and 176.2 mg·g−1, respectively. The Langmuir adsorption model was employed to better describe the isothermal adsorption behavior and confirm the monolayer adsorption phenomenon. The pseudo-second-order kinetic model was used to highlight Cu(II) and Pb(II) adsorption kinetics. Thermodynamic analysis indicated the removal Cu(II) and Pb(II) by TA-adsorbent was a nonspontaneous and exothermic reaction. The obtained results are of great significance to the conversion of industrial waste to low-cost adsorbent for Cu(II) and Pb(II) removal from water. Full article
(This article belongs to the Special Issue Second Edition of Municipal Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop