Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = refined simplified neutrosophic set

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 275 KiB  
Article
Vector Similarity Measures between Refined Simplified Neutrosophic Sets and Their Multiple Attribute Decision-Making Method
by Jiqian Chen, Jun Ye and Shigui Du
Symmetry 2017, 9(8), 153; https://doi.org/10.3390/sym9080153 - 11 Aug 2017
Cited by 27 | Viewed by 4854
Abstract
A refined single-valued/interval neutrosophic set is very suitable for the expression and application of decision-making problems with both attributes and sub-attributes since it is described by its refined truth, indeterminacy, and falsity degrees. However, existing refined single-valued/interval neutrosophic similarity measures and their decision-making [...] Read more.
A refined single-valued/interval neutrosophic set is very suitable for the expression and application of decision-making problems with both attributes and sub-attributes since it is described by its refined truth, indeterminacy, and falsity degrees. However, existing refined single-valued/interval neutrosophic similarity measures and their decision-making methods are scarcely studied in existing literature and cannot deal with this decision-making problem with the weights of both attributes and sub-attributes in a refined interval and/or single-valued neutrosophic setting. To solve the issue, this paper firstly introduces a refined simplified neutrosophic set (RSNS), which contains the refined single-valued neutrosophic set (RSVNS) and refined interval neutrosophic set (RINS), and then proposes vector similarity measures of RSNSs based on the Jaccard, Dice, and cosine measures of simplified neutrosophic sets in vector space, and the weighted Jaccard, Dice, and cosine measures of RSNSs by considering weights of both basic elements and sub-elements in RSNS. Further, a decision-making method with the weights of both attributes and sub-attributes is developed based on the weighted Jaccard, Dice, and cosine measures of RSNSs under RSNS (RINS and/or RSVNS) environments. The ranking order of all the alternatives and the best one can be determined by one of weighted vector similarity measures between each alternative and the ideal solution (ideal alternative). Finally, an actual example on the selecting problem of construction projects illustrates the application and effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Neutrosophic Theories Applied in Engineering)
Back to TopTop