Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = real-time recognition of automotive axle type features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16680 KB  
Article
Research on Axle Type Recognition Technology for Under-Vehicle Panorama Images Based on Enhanced ORB and YOLOv11
by Xiaofan Feng, Lu Peng, Yu Tang, Chang Liu and Huazhen An
Sensors 2025, 25(19), 6211; https://doi.org/10.3390/s25196211 - 7 Oct 2025
Viewed by 851
Abstract
With the strict requirements of national policies on truck dimensions, axle loads, and weight limits, along with the implementation of tolls based on vehicle types, rapid and accurate identification of vehicle axle types has become essential for toll station management. To address the [...] Read more.
With the strict requirements of national policies on truck dimensions, axle loads, and weight limits, along with the implementation of tolls based on vehicle types, rapid and accurate identification of vehicle axle types has become essential for toll station management. To address the limitations of existing methods in distinguishing between drive and driven axles, complex equipment setup, and image evidence retention, this article proposes a panoramic image detection technology for vehicle chassis based on enhanced ORB and YOLOv11. A portable vehicle chassis image acquisition system, based on area array cameras, was developed for rapid on-site deployment within 20 min, eliminating the requirement for embedded installation. The FeatureBooster (FB) module was employed to optimize the ORB algorithm’s feature matching, and combined with keyframe technology to achieve high-quality panoramic image stitching. After fine-tuning the FB model on a domain-specific area scan dataset, the number of feature matches increased to 151 ± 18, substantially outperforming both the pre-trained FB model and the baseline ORB. Experimental results on axle type recognition using the YOLOv11 algorithm combined with ORB and FB features demonstrated that the integrated approach achieved superior performance. On the overall test set, the model attained an mAP@50 of 0.989 and an mAP@50:95 of 0.780, along with a precision (P) of 0.98 and a recall (R) of 0.99. In nighttime scenarios, it maintained an mAP@50 of 0.977 and an mAP@50:95 of 0.743, with precision and recall both consistently at 0.98 and 0.99, respectively. The field verification shows that the real-time and accuracy of the system can provide technical support for the axle type recognition of toll stations. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop