Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rate–distortion–perception trade-off

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1467 KB  
Article
Rate–Distortion–Perception Trade-Off in Information Theory, Generative Models, and Intelligent Communications
by Xueyan Niu, Bo Bai, Nian Guo, Weixi Zhang and Wei Han
Entropy 2025, 27(4), 373; https://doi.org/10.3390/e27040373 - 31 Mar 2025
Cited by 2 | Viewed by 3405
Abstract
Traditional rate–distortion (RD) theory examines the trade-off between the average length of the compressed representation of a source and the additive distortions of its reconstruction. The rate–distortion–perception (RDP) framework, which integrates the perceptual dimension into the RD paradigm, has garnered significant attention due [...] Read more.
Traditional rate–distortion (RD) theory examines the trade-off between the average length of the compressed representation of a source and the additive distortions of its reconstruction. The rate–distortion–perception (RDP) framework, which integrates the perceptual dimension into the RD paradigm, has garnered significant attention due to recent advancements in machine learning, where perceptual fidelity is assessed by the divergence between input and reconstruction distributions. In communication systems where downstream tasks involve generative modeling, high perceptual fidelity is essential, despite distortion constraints. However, while zero distortion implies perfect realism, the converse is not true, highlighting an imbalance in the significance of distortion and perceptual constraints. This article clarifies that incorporating perceptual constraints does not decrease the necessary rate; instead, under certain conditions, additional rate is required, even with the aid of common and private randomness, which are key elements in generative models. Consequently, we project an increase in expected traffic in intelligent communication networks with the consideration of perceptual quality. Nevertheless, a modest increase in rate can enable generative models to significantly enhance the perceptual quality of reconstructions. By exploring the synergies between generative modeling and communication through the lens of information-theoretic results, this article demonstrates the benefits of intelligent communication systems and advocates for the application of the RDP framework in advancing compression and semantic communication research. Full article
(This article belongs to the Special Issue Semantic Information Theory)
Show Figures

Figure 1

25 pages, 9616 KB  
Article
Conditional Encoder-Based Adaptive Deep Image Compression with Classification-Driven Semantic Awareness
by Zhongyue Lei, Weicheng Zhang, Xuemin Hong, Jianghong Shi, Minxian Su and Chaoheng Lin
Electronics 2023, 12(13), 2781; https://doi.org/10.3390/electronics12132781 - 23 Jun 2023
Cited by 2 | Viewed by 2871
Abstract
This paper proposes a new algorithm for adaptive deep image compression (DIC) that can compress images for different purposes or contexts at different rates. The algorithm can compress images with semantic awareness, which means classification-related semantic features are better protected in lossy image [...] Read more.
This paper proposes a new algorithm for adaptive deep image compression (DIC) that can compress images for different purposes or contexts at different rates. The algorithm can compress images with semantic awareness, which means classification-related semantic features are better protected in lossy image compression. It builds on the existing conditional encoder-based DIC method and adds two features: a model-based rate-distortion-classification-perception (RDCP) framework to control the trade-off between rate and performance for different contexts, and a mechanism to generate coding conditions based on image complexity and semantic importance. The algorithm outperforms the QMAP2021 benchmark on the ImageNet dataset. Over the tested rate range, it improves the classification accuracy by 11% and the perceptual quality by 12.4%, 32%, and 1.3% on average for NIQE, LPIPS, and FSIM metrics, respectively. Full article
Show Figures

Graphical abstract

Back to TopTop