Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = rGO-VO2/W5O14

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6475 KB  
Article
Catalytic Interface of rGO-VO2/W5O14 Hydrogel for High-Performance Electrochemical Water Oxidation
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Gels 2025, 11(8), 670; https://doi.org/10.3390/gels11080670 - 21 Aug 2025
Cited by 1 | Viewed by 620
Abstract
The continuous increase in global energy demand necessitates the development of sustainable, clean, and highly efficient methods of energy generation. Electrochemical water splitting, comprising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), represents a promising strategy but remains hindered by sluggish reaction [...] Read more.
The continuous increase in global energy demand necessitates the development of sustainable, clean, and highly efficient methods of energy generation. Electrochemical water splitting, comprising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), represents a promising strategy but remains hindered by sluggish reaction kinetics and limited availability of highly active electrocatalysts especially under alkaline conditions. Addressing this challenge, we successfully synthesized a rGO-VO2/W5O14 (rG-VO2/W5O14) hydrogel electrocatalyst through a facile hydrothermal approach. The prepared composite distinctly reveals an advantageous hierarchical microstructure characterized by VO2 nanoflakes uniformly distributed on the surface of rGO nanosheets, intricately integrated with W5O14 nanorods. Evaluated in a 1.0 M KOH electrolyte, the optimized rG-VO2/W5O14-2 catalyst demonstrates remarkable electrocatalytic performance towards OER, achieving a low overpotential of 265.8 mV and a reduced Tafel slope of 81.9 mV dec−1. Furthermore, the catalyst maintains robust stability with minimal performance degradation, exhibiting an overpotential of only 273.0 mV after 5000 cyclic stability tests. The superior catalytic activity and durability are attributed to the synergistic combination of enriched chemical composition, effective electron transfer, and abundant catalytic active sites inherent in the well-optimized rG-VO2/W5O14-2 composite. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
Show Figures

Figure 1

Back to TopTop