Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = quaternion gated recurrent unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2409 KiB  
Article
A Quaternion Gated Recurrent Unit Neural Network for Sensor Fusion
by Uche Onyekpe, Vasile Palade, Stratis Kanarachos and Stavros-Richard G. Christopoulos
Information 2021, 12(3), 117; https://doi.org/10.3390/info12030117 - 9 Mar 2021
Cited by 24 | Viewed by 5329
Abstract
Recurrent Neural Networks (RNNs) are known for their ability to learn relationships within temporal sequences. Gated Recurrent Unit (GRU) networks have found use in challenging time-dependent applications such as Natural Language Processing (NLP), financial analysis and sensor fusion due to their capability to [...] Read more.
Recurrent Neural Networks (RNNs) are known for their ability to learn relationships within temporal sequences. Gated Recurrent Unit (GRU) networks have found use in challenging time-dependent applications such as Natural Language Processing (NLP), financial analysis and sensor fusion due to their capability to cope with the vanishing gradient problem. GRUs are also known to be more computationally efficient than their variant, the Long Short-Term Memory neural network (LSTM), due to their less complex structure and as such, are more suitable for applications requiring more efficient management of computational resources. Many of such applications require a stronger mapping of their features to further enhance the prediction accuracy. A novel Quaternion Gated Recurrent Unit (QGRU) is proposed in this paper, which leverages the internal and external dependencies within the quaternion algebra to map correlations within and across multidimensional features. The QGRU can be used to efficiently capture the inter- and intra-dependencies within multidimensional features unlike the GRU, which only captures the dependencies within the sequence. Furthermore, the performance of the proposed method is evaluated on a sensor fusion problem involving navigation in Global Navigation Satellite System (GNSS) deprived environments as well as a human activity recognition problem. The results obtained show that the QGRU produces competitive results with almost 3.7 times fewer parameters compared to the GRU.
Full article
(This article belongs to the Special Issue Intelligent Distributed Computing)
Show Figures

Figure 1

Back to TopTop