Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = quantum superadditivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 251 KiB  
Article
Improving the Performance of Quantum Cryptography by Using the Encryption of the Error Correction Data
by Valeria A. Pastushenko and Dmitry A. Kronberg
Entropy 2023, 25(6), 956; https://doi.org/10.3390/e25060956 - 20 Jun 2023
Cited by 13 | Viewed by 2690
Abstract
Security of quantum key distribution (QKD) protocols rely solely on quantum physics laws, namely, on the impossibility to distinguish between non-orthogonal quantum states with absolute certainty. Due to this, a potential eavesdropper cannot extract full information from the states stored in their quantum [...] Read more.
Security of quantum key distribution (QKD) protocols rely solely on quantum physics laws, namely, on the impossibility to distinguish between non-orthogonal quantum states with absolute certainty. Due to this, a potential eavesdropper cannot extract full information from the states stored in their quantum memory after an attack despite knowing all the information disclosed during classical post-processing stages of QKD. Here, we introduce the idea of encrypting classical communication related to error-correction in order to decrease the amount of information available to the eavesdropper and hence improve the performance of quantum key distribution protocols. We analyze the applicability of the method in the context of additional assumptions concerning the eavesdropper’s quantum memory coherence time and discuss the similarity of our proposition and the quantum data locking (QDL) technique. Full article
13 pages, 249 KiB  
Article
Axiomatic Characterization of the Quantum Relative Entropy and Free Energy
by Henrik Wilming, Rodrigo Gallego and Jens Eisert
Entropy 2017, 19(6), 241; https://doi.org/10.3390/e19060241 - 23 May 2017
Cited by 39 | Viewed by 6841
Abstract
Building upon work by Matsumoto, we show that the quantum relative entropy with full-rank second argument is determined by four simple axioms: (i) Continuity in the first argument; (ii) the validity of the data-processing inequality; (iii) additivity under tensor products; and (iv) super-additivity. [...] Read more.
Building upon work by Matsumoto, we show that the quantum relative entropy with full-rank second argument is determined by four simple axioms: (i) Continuity in the first argument; (ii) the validity of the data-processing inequality; (iii) additivity under tensor products; and (iv) super-additivity. This observation has immediate implications for quantum thermodynamics, which we discuss. Specifically, we demonstrate that, under reasonable restrictions, the free energy is singled out as a measure of athermality. In particular, we consider an extended class of Gibbs-preserving maps as free operations in a resource-theoretic framework, in which a catalyst is allowed to build up correlations with the system at hand. The free energy is the only extensive and continuous function that is monotonic under such free operations. Full article
(This article belongs to the Special Issue Quantum Thermodynamics)
Back to TopTop