Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = quadrilobal PET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4484 KB  
Article
Eco-Friendly Fibers Embedded Yarn Structure in High-Performance Fabrics to Improve Moisture Absorption and Drying Properties
by Hyun-Ah Kim
Polymers 2023, 15(3), 581; https://doi.org/10.3390/polym15030581 - 23 Jan 2023
Cited by 7 | Viewed by 3929
Abstract
This study examined the perspiration absorption and drying characteristics of eco-friendly fiber-embedded fabrics with different yarn structures. The wicking and drying rates of fifteen fabrics made from quadrilobal PET, Lyocell, and bamboo fibers were measured using two evaluation methods and compared with the [...] Read more.
This study examined the perspiration absorption and drying characteristics of eco-friendly fiber-embedded fabrics with different yarn structures. The wicking and drying rates of fifteen fabrics made from quadrilobal PET, Lyocell, and bamboo fibers were measured using two evaluation methods and compared with the pore diameter and hygroscopic characteristics of the constituent fibers in the yarns. The sheath/core yarn structure played a vital role in improving the moisture absorption and drying properties of the eco-friendly fibers embedded in high-performance fabrics, which was partly affected by the hygroscopicity and non-circular cross-section of constituent fibers in the yarns. Superior perspiration absorption and drying properties among the various eco-friendly high-performance fabrics were observed in the quadrilobal PET/Lyocell sheath/core and quadrilobal PET/bamboo spun yarn fabrics. By contrast, the PET/Lyocell Siro-fil, bamboo spun, and hi-multi PET yarn fabrics exhibited inferior moisture absorption and drying properties. In particular, the evaluated results between transverse and vertical wicking measuring methods in absorption property showed a similar trend. In contrast, the drying property measured between the drying rate (min) at a steady state and the drying rate (g) at a transient state showed a different trend. Multiple regression analysis showed that the wicking property of the eco-friendly fiber-embedded fabrics was mainly related to the pore diameter, cross-sectional shape, and absorption property of the fibers in the yarns, and it was also highly associated with the drying characteristics of the fabrics. The market application of the sheath/core yarn structure using Lyocell and bamboo fibers with quadrilobal PET is available for producing eco-friendly fabrics that can contribute to environmental improvement and wear comfort related to the moisture absorption and fast-drying properties of the woven fabrics. Full article
(This article belongs to the Special Issue High Performance Textiles II)
Show Figures

Figure 1

Back to TopTop