Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = q-factorial moments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 260 KiB  
Article
A Class of Power Series q-Distributions
by Charalambos A. Charalambides
Mathematics 2024, 12(5), 712; https://doi.org/10.3390/math12050712 - 28 Feb 2024
Cited by 1 | Viewed by 995
Abstract
A class of power series q-distributions, generated by considering a q-Taylor expansion of a parametric function into powers of the parameter, is discussed. Its q-factorial moments are obtained in terms of q-derivatives of its series (parametric) function. Also, it [...] Read more.
A class of power series q-distributions, generated by considering a q-Taylor expansion of a parametric function into powers of the parameter, is discussed. Its q-factorial moments are obtained in terms of q-derivatives of its series (parametric) function. Also, it is shown that the convolution of power series q-distributions is also a power series q-distribution. Furthermore, the q-Poisson (Heine and Euler), q-binomial of the first kind, negative q-binomial of the second kind, and q-logarithmic distributions are shown to be members of this class of distributions and their q-factorial moments are deduced. In addition, the convolution properties of these distributions are examined. Full article
13 pages, 253 KiB  
Article
Continuous Stieltjes-Wigert Limiting Behaviour of a Family of Confluent q-Chu-Vandermonde Distributions
by Andreas Kyriakoussis and Malvina Vamvakari
Axioms 2014, 3(2), 140-152; https://doi.org/10.3390/axioms3020140 - 10 Apr 2014
Cited by 3 | Viewed by 4418
Abstract
From Kemp [1], we have a family of confluent q-Chu- Vandermonde distributions, consisted by three members I, II and III, interpreted as a family of q-steady-state distributions from Markov chains. In this article, we provide the moments of the distributions of [...] Read more.
From Kemp [1], we have a family of confluent q-Chu- Vandermonde distributions, consisted by three members I, II and III, interpreted as a family of q-steady-state distributions from Markov chains. In this article, we provide the moments of the distributions of this family and we establish a continuous limiting behavior for the members I and II, in the sense of pointwise convergence, by applying a q-analogue of the usual Stirling asymptotic formula for the factorial number of order n. Specifically, we initially give the q-factorial moments and the usual moments for the family of confluent q-Chu- Vandermonde distributions and then we designate as a main theorem the conditions under which the confluent q-Chu-Vandermonde distributions I and II converge to a continuous Stieltjes-Wigert distribution. For the member III we give a continuous analogue. Moreover, as applications of this study we present a modified q-Bessel distribution, a generalized q-negative Binomial distribution and a generalized over/underdispersed (O/U) distribution. Note that in this article we prove the convergence of a family of discrete distributions to a continuous distribution which is not of a Gaussian type. Full article
Back to TopTop