Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = public outdoor webcams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6316 KB  
Article
Estimating Regional Snow Line Elevation Using Public Webcam Images
by Céline Portenier, Martina Hasler and Stefan Wunderle
Remote Sens. 2022, 14(19), 4730; https://doi.org/10.3390/rs14194730 - 21 Sep 2022
Cited by 3 | Viewed by 2729
Abstract
Snow cover is of high relevance for the Earth’s climate system, and its variability plays a key role in alpine hydrology, ecology, and socioeconomic systems. Measurements obtained by optical satellite remote sensing are an essential source for quantifying snow cover variability from a [...] Read more.
Snow cover is of high relevance for the Earth’s climate system, and its variability plays a key role in alpine hydrology, ecology, and socioeconomic systems. Measurements obtained by optical satellite remote sensing are an essential source for quantifying snow cover variability from a local to global scale. However, the temporal resolution of such measurements is often affected by persistent cloud coverage, limiting the application of high resolution snow cover mapping. In this study, we derive the regional snow line elevation in an alpine catchment area using public webcams. We compare our results to the snow line information derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 snow cover products and find our results to be in good agreement therewith. Between October 2017 and the end of June 2018, snow lines derived from webcams lie on average 55.8 m below and 33.7 m above MODIS snow lines using a normalized-difference snow index (NDSI) of 0.4 and 0.1, respectively, and are on average 53.1 m below snow lines derived from Sentinel-2. We further analyze the superior temporal resolution of webcam-based snow cover information and demonstrate its effectiveness in filling temporal gaps in satellite-based measurements caused by cloud cover. Our findings show the ability of webcam-based snow line elevation retrieval to complement and improve satellite-based measurements. Full article
Show Figures

Figure 1

16 pages, 13957 KB  
Article
Visualization of Pedestrian Density Dynamics Using Data Extracted from Public Webcams
by Anna Petrasova, J. Aaron Hipp and Helena Mitasova
ISPRS Int. J. Geo-Inf. 2019, 8(12), 559; https://doi.org/10.3390/ijgi8120559 - 5 Dec 2019
Cited by 15 | Viewed by 6276
Abstract
Accurate information on the number and distribution of pedestrians in space and time helps urban planners maintain current city infrastructure and design better public spaces for local residents and visitors. Previous studies have demonstrated that using webcams together with crowdsourcing platforms to locate [...] Read more.
Accurate information on the number and distribution of pedestrians in space and time helps urban planners maintain current city infrastructure and design better public spaces for local residents and visitors. Previous studies have demonstrated that using webcams together with crowdsourcing platforms to locate pedestrians in the captured images is a promising technique for analyzing pedestrian activity. However, it is challenging to efficiently transform the time series of pedestrian locations in the images to information suitable for geospatial analytics, as well as visualize data in a meaningful way to inform urban design or decision making. In this study, we propose to use a space-time cube (STC) representation of pedestrian data to analyze the spatio-temporal patterns of pedestrians in public spaces. We take advantage of AMOS (The Archive of Many Outdoor Scenes), a large database of images captured by thousands of publicly available, outdoor webcams. We developed a method to obtain georeferenced spatio-temporal data from webcams and to transform them into high-resolution continuous representation of pedestrian densities by combining bivariate kernel density estimation with trivariate, spatio-temporal spline interpolation. We demonstrate our method on two case studies analyzing pedestrian activity of two city plazas. The first case study explores daily and weekly spatio-temporal patterns of pedestrian activity while the second one highlights the differences in pattern before and after plaza’s redevelopment. While STC has already been used to visualize urban dynamics, this is the first study analyzing the evolution of pedestrian density based on crowdsourced time series of pedestrian occurrences captured by webcam images. Full article
(This article belongs to the Special Issue Measuring, Mapping, Modeling, and Visualization of Cities)
Show Figures

Graphical abstract

Back to TopTop