Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = private blockchain gateway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1323 KB  
Article
Enhancing Industrial IoT Network Security through Blockchain Integration
by Yash Bobde, Gokuleshwaran Narayanan, Manas Jati, Raja Soosaimarian Peter Raj, Ivan Cvitić and Dragan Peraković
Electronics 2024, 13(4), 687; https://doi.org/10.3390/electronics13040687 - 7 Feb 2024
Cited by 33 | Viewed by 5585
Abstract
In the rapidly evolving landscape of industrial ecosystems, Industrial IoT networks face increasing security challenges. Traditional security methods often struggle to protect these networks adequately, posing risks to data integrity, confidentiality, and access control. Our research introduces a methodology that leverages blockchain technology [...] Read more.
In the rapidly evolving landscape of industrial ecosystems, Industrial IoT networks face increasing security challenges. Traditional security methods often struggle to protect these networks adequately, posing risks to data integrity, confidentiality, and access control. Our research introduces a methodology that leverages blockchain technology to enhance the security and trustworthiness of IoT networks. This approach starts with sensor nodes collecting and compressing data, followed by encryption using the ChaCha20-Poly1305 algorithm and transmission to local aggregators. A crucial element of our system is the private blockchain gateway, which processes and classifies data based on confidentiality levels, determining their storage in cloud servers or the Interplanetary File System for enhanced security. The system’s integrity and authenticity are further reinforced through the proof of authority consensus mechanism. This system employs Zero Knowledge Proof challenges for device authorization, optimizing data retrieval while maintaining a delicate balance between security and accessibility. Our methodology contributes to mitigating vulnerabilities in Industrial IoT networks and is part of a broader effort to advance the security and operational efficiency of these systems. It reflects an understanding of the diverse and evolving challenges in IoT security, emphasizing the need for continuous innovation and adaptation in this dynamic field. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 382 KB  
Article
ZeroTrustBlock: Enhancing Security, Privacy, and Interoperability of Sensitive Data through ZeroTrust Permissioned Blockchain
by Pratik Thantharate and Anurag Thantharate
Big Data Cogn. Comput. 2023, 7(4), 165; https://doi.org/10.3390/bdcc7040165 - 17 Oct 2023
Cited by 33 | Viewed by 4606
Abstract
With the digitization of healthcare, an immense amount of sensitive medical data are generated and shared between various healthcare stakeholders—however, traditional health data management mechanisms present interoperability, security, and privacy challenges. The centralized nature of current health information systems leads to single points [...] Read more.
With the digitization of healthcare, an immense amount of sensitive medical data are generated and shared between various healthcare stakeholders—however, traditional health data management mechanisms present interoperability, security, and privacy challenges. The centralized nature of current health information systems leads to single points of failure, making the data vulnerable to cyberattacks. Patients also have little control over their medical records, raising privacy concerns. Blockchain technology presents a promising solution to these challenges through its decentralized, transparent, and immutable properties. This research proposes ZeroTrustBlock, a comprehensive blockchain framework for secure and private health information exchange. The decentralized ledger enhances integrity, while permissioned access and smart contracts enable patient-centric control over medical data sharing. A hybrid on-chain and off-chain storage model balances transparency with confidentiality. Integration gateways bridge ZeroTrustBlock protocols with existing systems like EHRs. Implemented on Hyperledger Fabric, ZeroTrustBlock demonstrates substantial security improvements over mainstream databases via cryptographic mechanisms, formal privacy-preserving protocols, and access policies enacting patient consent. Results validate the architecture’s effectiveness in achieving 14,200 TPS average throughput, 480 ms average latency for 100,000 concurrent transactions, and linear scalability up to 20 nodes. However, enhancements around performance, advanced cryptography, and real-world pilots are future work. Overall, ZeroTrustBlock provides a robust application of blockchain capabilities to transform security, privacy, interoperability, and patient agency in health data management. Full article
(This article belongs to the Special Issue Big Data in Health Care Information Systems)
Show Figures

Figure 1

32 pages, 6071 KB  
Article
An Autonomous Log Storage Management Protocol with Blockchain Mechanism and Access Control for the Internet of Things
by Chien-Lung Hsu, Wei-Xin Chen and Tuan-Vinh Le
Sensors 2020, 20(22), 6471; https://doi.org/10.3390/s20226471 - 12 Nov 2020
Cited by 25 | Viewed by 5452
Abstract
As the Internet of Things (IoT) has become prevalent, a massive number of logs produced by IoT devices are transmitted and processed every day. The logs should contain important contents and private information. Moreover, these logs may be used as evidences for forensic [...] Read more.
As the Internet of Things (IoT) has become prevalent, a massive number of logs produced by IoT devices are transmitted and processed every day. The logs should contain important contents and private information. Moreover, these logs may be used as evidences for forensic investigations when cyber security incidents occur. However, evidence legality and internal security issues in existing works were not properly addressed. This paper proposes an autonomous log storage management protocol with blockchain mechanism and access control for the IoT. Autonomous model allows sensors to encrypt their logs before sending it to gateway and server, so that the logs are not revealed to the public during communication process. Along with blockchain, we introduce the concept “signature chain”. The integration of blockchain and signature chain provides efficient management functions with valuable security properties for the logs, including robust identity verification, data integrity, non-repudiation, data tamper resistance, and the legality. Our work also employs attribute-based encryption to achieve fine-grained access control and data confidentiality. The results of security analysis using AVSIPA toolset, GNY logic and semantic proof indicate that the proposed protocol meets various security requirements. Providing good performance with elliptic curve small key size, short BLS signature, efficient signcryption method, and single sign-on solution, our work is suitable for the IoT. Full article
(This article belongs to the Special Issue Blockchain for IoT Security, Privacy and Intelligence)
Show Figures

Figure 1

11 pages, 426 KB  
Letter
Enhancing Border Gateway Protocol Security Using Public Blockchain
by Lukas Mastilak, Marek Galinski, Pavol Helebrandt, Ivan Kotuliak and Michal Ries
Sensors 2020, 20(16), 4482; https://doi.org/10.3390/s20164482 - 11 Aug 2020
Cited by 14 | Viewed by 4412
Abstract
Communication on the Internet consisting of a massive number of Autonomous Systems (AS) depends on routing based on Border Gateway Protocol (BGP). Routers generally trust the veracity of information in BGP updates from their neighbors, as with many other routing protocols. However, this [...] Read more.
Communication on the Internet consisting of a massive number of Autonomous Systems (AS) depends on routing based on Border Gateway Protocol (BGP). Routers generally trust the veracity of information in BGP updates from their neighbors, as with many other routing protocols. However, this trust leaves the whole system vulnerable to multiple attacks, such as BGP hijacking. Several solutions have been proposed to increase the security of BGP routing protocol, most based on centralized Public Key Infrastructure, but their adoption has been relatively slow. Additionally, these solutions are open to attack on this centralized system. Decentralized alternatives utilizing blockchain to validate BGP updates have recently been proposed. The distributed nature of blockchain and its trustless environment increase the overall system security and conform to the distributed character of the BGP. All of the techniques based on blockchain concentrate on inspecting incoming BGP updates only. In this paper, we improve on these by modifying an existing architecture for the management of network devices. The original architecture adopted a private blockchain implementation of HyperLedger. On the other hand, we use the public blockchain Ethereum, more specifically the Ropsten testing environment. Our solution provides a module design for the management of AS border routers. It enables verification of the prefixes even before any router sends BGP updates announcing them. Thus, we eliminate fraudulent BGP origin announcements from the AS deploying our solution. Furthermore, blockchain provides storage options for configurations of edge routers and keeps the irrefutable history of all changes. We can analyze router settings history to detect whether the router advertised incorrect information, when and for how long. Full article
Show Figures

Figure 1

Back to TopTop