Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = praseodymium/ytterbium zirconates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3154 KiB  
Article
Influence of Synthesis Conditions on the Crystal, Local Atomic, Electronic Structure, and Catalytic Properties of (Pr1−xYbx)2Zr2O7 (0 ≤ x ≤ 1) Powders
by Victor V. Popov, Ekaterina B. Markova, Yan V. Zubavichus, Alexey P. Menushenkov, Alexey A. Yastrebtsev, Bulat R. Gaynanov, Olga V. Chernysheva, Andrei A. Ivanov, Sergey G. Rudakov, Maria M. Berdnikova, Alexander A. Pisarev, Elizaveta S. Kulikova, Nickolay A. Kolyshkin, Evgeny V. Khramov, Victor N. Khrustalev, Igor V. Shchetinin, Nadezhda A. Tsarenko, Natalia V. Ognevskaya and Olga N. Seregina
Crystals 2023, 13(9), 1405; https://doi.org/10.3390/cryst13091405 - 21 Sep 2023
Cited by 2 | Viewed by 3626
Abstract
The influence of Yb3+ cations substitution for Pr3+ on the structure and catalytic activity of (Pr1−xYbx)2Zr2O7 powders synthesized via coprecipitation followed by calcination is studied using a combination of long- (s-XRD), [...] Read more.
The influence of Yb3+ cations substitution for Pr3+ on the structure and catalytic activity of (Pr1−xYbx)2Zr2O7 powders synthesized via coprecipitation followed by calcination is studied using a combination of long- (s-XRD), medium- (Raman, FT-IR, and SEM-EDS) and short-range (XAFS) sensitive methods, as well as adsorption and catalytic techniques. It is established that chemical composition and calcination temperature are the two major factors that govern the phase composition, crystallographic, and local-structure parameters of these polycrystalline materials. The crystallographic and local-structure parameters of (Pr1−xYbx)2Zr2O7 samples prepared at 1400 °C/3 h demonstrate a tight correlation with their catalytic activity towards propane cracking. The progressive replacement of Pr3+ with Yb3+ cations gives rise to an increase in the catalytic activity. A mechanism of the catalytic cracking of propane is proposed, which considers the geometrical match between the metal–oxygen (Pr–O, Yb–O, and Zr–O) bond lengths within the active sites and the size of adsorbed propane molecule to be the decisive factor governing the reaction route. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (Volume II))
Show Figures

Figure 1

Back to TopTop