Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = port hazardous materials transportation system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4910 KB  
Article
Monitoring the Integrity and Vulnerability of Linear Urban Infrastructure in a Reclaimed Coastal City Using SAR Interferometry
by WoonSeong Jeong, Moon-Soo Song, Manik Das Adhikari and Sang-Guk Yum
Buildings 2025, 15(21), 3865; https://doi.org/10.3390/buildings15213865 - 26 Oct 2025
Cited by 1 | Viewed by 1118
Abstract
Reclaimed coastal areas are highly susceptible to uneven subsidence caused by the consolidation of soft marine deposits, which can induce differential settlement, structural deterioration, and systemic risks to urban infrastructure. Further, engineering activities, such as construction and loadings, exacerbate subsidence, impacting infrastructure stability. [...] Read more.
Reclaimed coastal areas are highly susceptible to uneven subsidence caused by the consolidation of soft marine deposits, which can induce differential settlement, structural deterioration, and systemic risks to urban infrastructure. Further, engineering activities, such as construction and loadings, exacerbate subsidence, impacting infrastructure stability. Therefore, monitoring the integrity and vulnerability of linear urban infrastructure after construction on reclaimed land is critical for understanding settlement dynamics, ensuring safe and reliable operation and minimizing cascading hazards. Subsequently, in the present study, to monitor deformation of the linear infrastructure constructed over decades-old reclaimed land in Mokpo city, South Korea (where 70% of urban and port infrastructure is built on reclaimed land), we analyzed 79 Sentinel-1A SLC ascending-orbit datasets (2017–2023) using the Persistent Scatterer Interferometry (PSInSAR) technique to quantify vertical land motion (VLM). Results reveal settlement rates ranging from −12.36 to 4.44 mm/year, with an average of −1.50 mm/year across 1869 persistent scatterers located along major roads and railways. To interpret the underlying causes of this deformation, Casagrande plasticity analysis of subsurface materials revealed that deep marine clays beneath the reclaimed zones have low permeability and high compressibility, leading to slow pore-pressure dissipation and prolonged consolidation under sustained loading. This geotechnical behavior accounts for the persistent and spatially variable subsidence observed through PSInSAR. Spatial pattern analysis using Anselin Local Moran’s I further identified statistically significant clusters and outliers of VLM, delineating critical infrastructure segments where concentrated settlement poses heightened risks to transportation stability. A hyperbolic settlement model was also applied to anticipate nonlinear consolidation trends at vulnerable sites, predicting persistent subsidence through 2030. Proxy-based validation, integrating long-term groundwater variations, lithostratigraphy, effective shear-wave velocity (Vs30), and geomorphological conditions, exhibited the reliability of the InSAR-derived deformation fields. The findings highlight that Mokpo’s decades-old reclamation fills remain geotechnically unstable, highlighting the urgent need for proactive monitoring, targeted soil improvement, structural reinforcement, and integrated InSAR-GNSS monitoring frameworks to ensure the structural integrity of road and railway infrastructure and to support sustainable urban development in reclaimed coastal cities worldwide. Full article
Show Figures

Figure 1

17 pages, 2105 KB  
Article
Risk-Coupling Analysis and Control Mechanism of Port Dangerous Goods Transportation System
by Yongjun Chen, Xiang Lian, Lei Wang, Mengfan Li and Yuhan Zhang
J. Mar. Sci. Eng. 2025, 13(10), 1879; https://doi.org/10.3390/jmse13101879 - 1 Oct 2025
Viewed by 634
Abstract
With the integration of the global economy and the rapid development of port logistics, the port dangerous goods transportation system faces complex risk-coupling problems, and the probability of accidents keeps climbing. However, the existing research on the system risk-coupling mechanism and dynamic control [...] Read more.
With the integration of the global economy and the rapid development of port logistics, the port dangerous goods transportation system faces complex risk-coupling problems, and the probability of accidents keeps climbing. However, the existing research on the system risk-coupling mechanism and dynamic control mechanism is still insufficient, and there is an urgent need to construct a scientific risk analysis and control model. This study takes the port dangerous goods transportation system as the object, based on the four-factor framework of “personnel-machine-environment-management,” uses the N-K model to quantify the degree of risk coupling, analyzes the dynamic evolution mechanism of risk under the action of a single factor, and uses Dufferin’s oscillation and bifurcation response equation to reveal the interaction between the system’s internal defenses and the external influences. It is found that the coupled risk value of personnel–machine factors is the highest, and the sudden change in system state is characterized by a sudden jump and lag. The system stability can be significantly improved by enhancing internal damping control and optimizing external excitation regulation. This study provides a quantitative tool for the risk assessment of dangerous goods transportation in ports and theoretical support for the development of the “damping-excitation” synergistic control strategy, which is of great practical significance for the improvement of the port safety management system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop