Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = polyvalent oligonucleotide interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4000 KiB  
Article
Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing
by Laura-Elena Gliga, Bogdan-Cezar Iacob, Sanda-Nastasia Moldovean, David A. Spivak, Andreea Elena Bodoki, Ede Bodoki and Radu Oprean
Int. J. Mol. Sci. 2023, 24(1), 175; https://doi.org/10.3390/ijms24010175 - 22 Dec 2022
Cited by 2 | Viewed by 2013
Abstract
The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed [...] Read more.
The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides. Full article
(This article belongs to the Special Issue Protein and DNA Interaction)
Show Figures

Figure 1

Back to TopTop