Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = polyhedral iron oxide magnetic nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6503 KB  
Article
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties
by Cristian Iacovita, Adrian Florea, Roxana Dudric, Emoke Pall, Alin Iulian Moldovan, Romulus Tetean, Rares Stiufiuc and Constantin Mihai Lucaciu
Molecules 2016, 21(10), 1357; https://doi.org/10.3390/molecules21101357 - 13 Oct 2016
Cited by 51 | Viewed by 7800
Abstract
Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe3O4-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol [...] Read more.
Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe3O4-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/gMNP for the small monocrystalline MNPs and only 400 W/gMNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism. Full article
Show Figures

Figure 1

Back to TopTop