Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = polycrystalline CdS1−xSex films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5283 KiB  
Article
Morphological Features of Polycrystalline CdS1−xSex Films Obtained by Screen-Printing Method
by Diana M. Strateichuk, Nikita V. Martyushev, Roman V. Klyuev, Vitaliy A. Gladkikh, Vladislav V. Kukartsev, Yadviga A. Tynchenko and Antonina I. Karlina
Crystals 2023, 13(5), 825; https://doi.org/10.3390/cryst13050825 - 16 May 2023
Cited by 94 | Viewed by 3943
Abstract
The results of studying the morphological peculiarities of polycrystalline CdS1−xSex films, obtained by screen printing, with well-formed grain boundaries of high structural quality are presented here. The developed method for screen printing provides the formation of polycrystalline films of a [...] Read more.
The results of studying the morphological peculiarities of polycrystalline CdS1−xSex films, obtained by screen printing, with well-formed grain boundaries of high structural quality are presented here. The developed method for screen printing provides the formation of polycrystalline films of a specified area per cycle, provided that there is a possibility for varying their thickness from tens of microns to units, which allows reducing the solar cell’s thickness and facilitating the process of its connection with the substrate. Therefore, the application of the films to a sitall substrate by screen printing contributes to reducing the product weight and facilitating the process of joining sheet materials intended for solar panels, namely attaching the lasing element to the substrate. The purpose of this work is to study the morphological peculiarities of polycrystalline CdS1−xSex films obtained by an optimized screen-printing method and to create a model of their formation process. The structural and morphological peculiarities of the samples were studied using electron microscopy, AFM, XPA, and XFS. As a result of the work, based on the obtained experimental data, a model of the film formation process was developed. The model validity is justified by the conformity of the data of the experiment performed on its basis. Full article
Show Figures

Figure 1

Back to TopTop