Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = platinum acetylide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6354 KiB  
Article
Synthesis, Photoluminescence, and Electroluminescence of Phosphorescent Dipyrido[3,2-a;2′3′-c]phenazine–Platinum(II) Complexes Bearing Hole-Transporting Acetylide Ligands
by Hiroki Matsuura, Naoki Okamura, Masaki Nagaoka, Naoya Suzuki, Shintaro Kodama, Takeshi Maeda and Shigeyuki Yagi
Molecules 2024, 29(16), 3849; https://doi.org/10.3390/molecules29163849 - 14 Aug 2024
Cited by 1 | Viewed by 1112
Abstract
In this study, novel phosphorescent dipyrido[3,2-a;2′3′-c]phenazine (dppz)–platinum(II)–phenylacetylide complexes were developed to fabricate non-doped organic light-emitting diodes (OLED) by solution-processing. To facilitate the charge carrier injection into the emitting layer (EML), 3,6-di-tert-butylcarbazole-functinalized phenylacetylides were employed. As for the [...] Read more.
In this study, novel phosphorescent dipyrido[3,2-a;2′3′-c]phenazine (dppz)–platinum(II)–phenylacetylide complexes were developed to fabricate non-doped organic light-emitting diodes (OLED) by solution-processing. To facilitate the charge carrier injection into the emitting layer (EML), 3,6-di-tert-butylcarbazole-functinalized phenylacetylides were employed. As for the dppz ligand, 9,9-dihexylfluoren-2-yl and 4-hexylthiophen-2-yl side-arms were introduced to the 2,7-positions, which led to reddish orange and red photoluminescence (PL), respectively, in solution and film states (PL wavelength: ca. 600 and ca. 625 nm, respectively). The carbazole-appended phenylacetylide ligands hardly affected the emission color, although unsubstituted phenylacetylides gave rise to aggregate- or excimer-based near-infrared PL with a low quantum yield. Two types of non-doped OLEDs were fabricated: single-layer and multilayer devices. In both devices, the organic layers were fabricated by spin-coating, and the EML consisted of a neat film of the corresponding platinum(II) complex. Therein, electroluminescence spectra corresponding to those of PL were observed. The single-layer devices exhibited low device efficiencies due to a deteriorated charge carrier balance. The multilayer devices possessed hole- and electron-transporting layers on the anode and cathode sides of the EML, respectively. Owing to an improved charge carrier balance, the multilayer devices exhibited higher device performance, affording considerably improved values of luminance and external quantum efficiency. Full article
Show Figures

Graphical abstract

12 pages, 23842 KiB  
Article
Investigation of the Amide Linkages on Cooperative Supramolecular Polymerization of Organoplatinum(II) Complexes
by Mingliang Gui, Yifei Han, Hua Zhong, Rui Liao and Feng Wang
Molecules 2021, 26(9), 2832; https://doi.org/10.3390/molecules26092832 - 10 May 2021
Cited by 3 | Viewed by 3384
Abstract
Cooperative supramolecular polymerization of π-conjugated compounds into one-dimensional nanostructures has received tremendous attentions in recent years. It is commonly achieved by incorporating amide linkages into the monomeric structures, which provide hydrogen bonds for intermolecular non-covalent complexation. Herein, the effect of amide linkages is [...] Read more.
Cooperative supramolecular polymerization of π-conjugated compounds into one-dimensional nanostructures has received tremendous attentions in recent years. It is commonly achieved by incorporating amide linkages into the monomeric structures, which provide hydrogen bonds for intermolecular non-covalent complexation. Herein, the effect of amide linkages is elaborately studied, by comparing supramolecular polymerization behaviors of two structurally similar monomers with the same platinum(II) acetylide cores. As compared to the N-phenyl benzamide linkages, N-[(1S)-1-phenylethyl] benzamide linkages give rise to effective chirality transfer behaviors due to the closer distances between the chiral units and the platinum(II) acetylide core. They also provide stronger intermolecular hydrogen bonding strength, which consequently brings higher thermo-stability and enhanced gelation capability for the resulting supramolecular polymers. Supramolecular polymerization is further strengthened by varying the monomers from monotopic to ditopic structures. Hence, with the judicious modulation of structural parameters, the current study opens up new avenues for the rational design of supramolecular polymeric systems. Full article
(This article belongs to the Special Issue Recent Advances in Supramolecular Organometallic Chemistry)
Show Figures

Figure 1

10 pages, 4205 KiB  
Article
Complementary Color Tuning by HCl via Phosphorescence-to-Fluorescence Conversion on Insulated Metallopolymer Film and Its Light-Induced Acceleration
by Shunichi Kaneko, Hiroshi Masai, Takuya Yokoyama, Maning Liu, Yasuhiro Tachibana, Tetsuaki Fujihara, Yasushi Tsuji and Jun Terao
Polymers 2020, 12(1), 244; https://doi.org/10.3390/polym12010244 - 20 Jan 2020
Cited by 9 | Viewed by 4375
Abstract
An insulated metallopolymer that undergoes phosphorescence-to-fluorescence conversion between complementary colors by an acid-stimulus is proposed as a color-tunable material. A Pt-based phosphorescent metallopolymer, where the conjugated polymeric backbone is insulated by a cyclodextrin, is depolymerized by HCl via acidic cleavage of Pt-acetylide bonds [...] Read more.
An insulated metallopolymer that undergoes phosphorescence-to-fluorescence conversion between complementary colors by an acid-stimulus is proposed as a color-tunable material. A Pt-based phosphorescent metallopolymer, where the conjugated polymeric backbone is insulated by a cyclodextrin, is depolymerized by HCl via acidic cleavage of Pt-acetylide bonds to form a fluorescent monomer. The insulation enables phosphorescence-to-fluorescence conversion to take place in the solid film. Rapid color change was achieved by accelerating the reaction between the metallopolymer and HCl by UV irradiation. These approaches are expected to provide new guidelines for the development of next-generation color-tunable materials and printable sensors based on precise molecular engineering. Full article
Show Figures

Graphical abstract

14 pages, 4795 KiB  
Article
Boosting the Adhesivity of π-Conjugated Polymers by Embedding Platinum Acetylides towards High-Performance Thermoelectric Composites
by Tao Wan, Xiaojun Yin, Chengjun Pan, Danqing Liu, Xiaoyan Zhou, Chunmei Gao, Wai-Yeung Wong and Lei Wang
Polymers 2019, 11(4), 593; https://doi.org/10.3390/polym11040593 - 1 Apr 2019
Cited by 15 | Viewed by 3635
Abstract
Single-walled carbon nanotubes (SWCNTs) incorporated with π-conjugated polymers, have proven to be an effective approach in the production of advanced thermoelectric composites. However, the studied polymers are mainly limited to scanty conventional conductive polymers, and their performances still remain to be improved. Herein, [...] Read more.
Single-walled carbon nanotubes (SWCNTs) incorporated with π-conjugated polymers, have proven to be an effective approach in the production of advanced thermoelectric composites. However, the studied polymers are mainly limited to scanty conventional conductive polymers, and their performances still remain to be improved. Herein, a new planar moiety of platinum acetylide in the π-conjugated system is introduced to enhance the intermolecular interaction with the SWCNTs via π–π and d–π interactions, which is crucial in regulating the thermoelectric performances of SWCNT-based composites. As expected, SWCNT composites based on the platinum acetylides embedded polymers displayed a higher power factor (130.7 ± 3.8 μW·m−1·K−2) at ambient temperature than those without platinum acetylides (59.5 ± 0.7 μW·m−1·K−2) under the same conditions. Moreover, the strong interactions between the platinum acetylide-based polymers and the SWCNTs are confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. Full article
(This article belongs to the Special Issue Polymer-CNT Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop