Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = plastivore larvae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5744 KiB  
Review
Using Insect Larvae and Their Microbiota for Plastic Degradation
by Isabel Vital-Vilchis and Esther Karunakaran
Insects 2025, 16(2), 165; https://doi.org/10.3390/insects16020165 - 5 Feb 2025
Cited by 4 | Viewed by 4452
Abstract
Plastic pollution is one of the biggest current global threats to the environment given that petroleum-based plastic is recalcitrant and can stay in the environment for decades, even centuries, depending on the specific plastic type. Since less than 10% of all plastic made [...] Read more.
Plastic pollution is one of the biggest current global threats to the environment given that petroleum-based plastic is recalcitrant and can stay in the environment for decades, even centuries, depending on the specific plastic type. Since less than 10% of all plastic made is recycled, and the other solutions (such as incineration or landfill storage) are pollutant methods, new, environmentally friendly solutions are needed. In this regard, the latest biotechnological discovery on this topic is the capability of insect larvae to use plastic polymers as carbon feedstock. This present review describes the most relevant information on the insect larvae capable of degrading plastic, mainly Galleria mellonella (Fabricius, 1798), Tenebrio molitor (Linnaeus, 1758), and Zophobas atratus (Fabricius, 1776), and also adds new information about other less commonly studied “plastivore” insects such as termites. This review covers the literature from the very first work describing plastic degradation by larvae published in 2014 all the way to the very latest research available (till June 2024), focusing on the identification of a wide variety of plastic-degrading microorganisms isolated from larvae guts and on the understanding of the potential molecular mechanisms present for degradation to take place. It also describes the latest discoveries, which include the identification of novel enzymes from waxworm saliva. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Graphical abstract

13 pages, 1044 KiB  
Article
Effect of Co-Diet Supplementation on Biodegradation of Polyethylene by Galleria mellonella L. (Lepidoptera: Pyralidae)
by Areej Mahfooz, Muhammad Yasin, Mirza Abdul Qayyum, Asim Abbasi, Abeer Hashem, Khalid F. Almutairi, Elsayed Fathi Abd_Allah, Muhammad Farhan, Muhammad Anjum Aqueel and Mishal Subhan
Insects 2024, 15(9), 704; https://doi.org/10.3390/insects15090704 - 16 Sep 2024
Viewed by 1843
Abstract
Pollution coming from plastic polymers, particularly polyethylene (PE), poses a serious threat to both humans and animals. The biodegradation of plastics facilitated by insects is a crucial and eco-friendly approach that can be employed to combat this global concern. Recently, the larvae of [...] Read more.
Pollution coming from plastic polymers, particularly polyethylene (PE), poses a serious threat to both humans and animals. The biodegradation of plastics facilitated by insects is a crucial and eco-friendly approach that can be employed to combat this global concern. Recently, the larvae of the greater wax moth Galleria mellonella (L.) have been recognized as avid ‘plastivores’. The current study was aimed at evaluating the feeding efficiency of G. mellonella larvae on PEs of various densities with a co-diet supplementation of wheat germ + honey and beeswax. The results reveal that maximum PE consumption (9.98 ± 1.25 mg) was recorded in the case of 1.0 mm thick PE after a 24 h interval; however, the same scenario also achieved the greatest reduction in larval weight (27.79 ± 2.02 mg). A significant reduction in PE mass (5.87 ± 1.44 mg) was also observed in 1.0 mm PE when fed beeswax; however, the larvae experienced minimal weight loss (9.59 ± 3.81 mg). The larvae exhibited a higher PE consumption in 1.0 mm PE, indicating that the lower the density of PE, the greater the consumed area. Moreover, the biodegradation levels were notably higher within the 24 h interval. In conclusion, these findings suggest that the density of PEs and the supplementation of the co-diet have an impact on PE biodegradation. Additionally, the utilization of G. mellonella for the biodegradation of PE proves effective when combined with beeswax, resulting in minimal weight loss of the larvae. Our findings offer initial insights into how Galleria mellonella larvae biodegrade polyethylene (PE) of four different densities, along with co-diet supplementation. This approach helps us evaluate how varying densities affect degradation rates and provides a better understanding of the larvae’s capabilities. Additionally, our observations at three specific time intervals (24, 48, and 72 h) allow us to identify the time required for achieving degradation rates. Through examining these time points, our method offers valuable insights into the initial phases of plastic consumption and biodegradation. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

Back to TopTop