Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = plasma chemokine (C-C motif) ligands 3 and 4 (CCL3 and CCL4)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1687 KiB  
Article
Exploratory Transcriptomic Profiling Reveals the Role of Gut Microbiota in Vascular Dementia
by Navdeep Kaur, Geneva LaForce, Deepthi P. Mallela, Prasenjit Prasad Saha, Jennifer Buffa, Xinmin S. Li, Naseer Sangwan, Kasia Rothenberg and Weifei Zhu
Int. J. Mol. Sci. 2023, 24(9), 8091; https://doi.org/10.3390/ijms24098091 - 30 Apr 2023
Cited by 8 | Viewed by 3612
Abstract
Stroke is the second most common cause of cognitive impairment and dementia. Vascular dementia (VaD), a cognitive impairment following a stroke, is common and significantly impacts the quality of life. We recently demonstrated via gut microbe transplant studies that the gut microbe-dependent trimethylamine-N-oxide [...] Read more.
Stroke is the second most common cause of cognitive impairment and dementia. Vascular dementia (VaD), a cognitive impairment following a stroke, is common and significantly impacts the quality of life. We recently demonstrated via gut microbe transplant studies that the gut microbe-dependent trimethylamine-N-oxide (TMAO) pathway impacts stroke severity, both infarct size and long-term cognitive outcomes. However, the molecular mechanisms that underly the role of the microbiome in VaD have not been explored in depth. To address this issue, we performed a comprehensive RNA-sequencing analysis to identify differentially expressed (DE) genes in the ischemic cerebral cortex of mouse brains at pre-stroke and post-stroke day 1 and day 3. A total of 4016, 3752 and 7861 DE genes were identified at pre-stroke and post-stroke day 1 and day 3, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated pathways of neurodegeneration in multiple diseases, chemokine signaling, calcium signaling, and IL-17 signaling as the key enriched pathways. Inflammatory response genes interleukin-1 beta (Il-1β), chemokines (C–X–C motif chemokine ligand 10 (Cxcl10), chemokine ligand 2 (Ccl2)), and immune system genes (S100 calcium binding protein 8 (S100a8), lipocalin-2 (Lcn2)) were among the most significantly upregulated genes. Hypocretin neuropeptide precursor (Hcrt), a neuropeptide, and transcription factors such as neuronal PAS domain protein 4 (Npas4), GATA binding protein 3 (Gata3), and paired box 7 (Pax7) were among the most significantly downregulated genes. In conclusion, our results indicate that higher plasma TMAO levels induce differential mRNA expression profiles in the ischemic brain tissue in our pre-clinical stroke model, and the predicted pathways provide the molecular basis for regulating the TMAO-enhanced neuroinflammatory response in the brain. Full article
Show Figures

Figure 1

8 pages, 570 KiB  
Brief Report
Ex Vivo Mitochondrial Respiration Parallels Biochemical Response to Ibrutinib in CLL Cells
by Subir Roy Chowdhury, Cheryl Peltier, Sen Hou, Amandeep Singh, James B. Johnston, Spencer B. Gibson, Aaron J. Marshall and Versha Banerji
Cancers 2021, 13(2), 354; https://doi.org/10.3390/cancers13020354 - 19 Jan 2021
Cited by 3 | Viewed by 3060
Abstract
Mitochondrial respiration is becoming more commonly used as a preclinical tool and potential biomarker for chronic lymphocytic leukemia (CLL) and activated B-cell receptor (BCR) signaling. However, respiration parameters have not been evaluated with respect to dose of ibrutinib given in clinical practice or [...] Read more.
Mitochondrial respiration is becoming more commonly used as a preclinical tool and potential biomarker for chronic lymphocytic leukemia (CLL) and activated B-cell receptor (BCR) signaling. However, respiration parameters have not been evaluated with respect to dose of ibrutinib given in clinical practice or the effect of progression on ibrutinib treatment on respiration of CLL cells. We evaluated the impact of low and standard dose ibrutinib on CLL cells from patients treated in vivo on mitochondrial respiration using Oroboros oxygraph. Cytokines CCL3 and CCL4 were evaluated using the Mesoscale. Western blot analysis was used to evaluate the BCR and apoptotic pathways. We observed no difference in the mitochondrial respiration rates or levels of plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4), β-2 microglobulin (β-2 M) and lactate dehydrogenase (LDH) between low and standard doses of ibrutinib. This may confirm why clinical observations of the safety and efficacy of low dose ibrutinib are observed in practice. Of interest, we also observed that the mitochondrial respiration of CLL cells paralleled the increase in β-2 M and LDH at progression. Our study further supports mitochondrial respiration as a biomarker for response and progression on ibrutinib in CLL cells and a valuable pre-clinical tool. Full article
(This article belongs to the Special Issue Novel Drug Targets and Advances in Treatment of CLL)
Show Figures

Figure 1

19 pages, 3179 KiB  
Article
Mitochondrial Respiration Correlates with Prognostic Markers in Chronic Lymphocytic Leukemia and Is Normalized by Ibrutinib Treatment
by Subir Roy Chowdhury, Eric D. J. Bouchard, Ryan Saleh, Zoann Nugent, Cheryl Peltier, Edgard Mejia, Sen Hou, Carly McFall, Mandy Squires, Donna Hewitt, Linda Davidson, Garry X. Shen, James B. Johnston, Christine Doucette, Grant M. Hatch, Paul Fernyhough, Aaron Marshall, Spencer B. Gibson, David E. Dawe and Versha Banerji
Cancers 2020, 12(3), 650; https://doi.org/10.3390/cancers12030650 - 11 Mar 2020
Cited by 19 | Viewed by 5188
Abstract
Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to [...] Read more.
Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to evaluate mitochondrial function. We found significant increases in mitochondrial respiration rates in CLL versus control B lymphocytes. We also observed amongst CLL patients that advanced age, female sex, zeta-chain-associated protein of 70 kD (ZAP-70+), cluster of differentiation 38 (CD38+), and elevated β2-microglobulin (β2-M) predicted increased maximal respiration rates. ZAP-70+ CLL cells exhibited significantly higher bioenergetics than B lymphocytes or ZAP-70 CLL cells and were more sensitive to the uncoupler, carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone (FCCP). Univariable and multivariable linear regression analysis demonstrated that ZAP-70+ predicted increased maximal respiration. ZAP-70+ is a surrogate for B cell receptor (BCR) activation and can be targeted by ibrutinib, which is a clinically approved Bruton’s tyrosine kinase (BTK) inhibitor. Therefore, we evaluated the oxygen consumption rates (OCR) of CLL cells and plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4) levels from ibrutinib-treated patients and demonstrated decreased OCR similar to control B lymphocytes, suggesting that ibrutinib treatment resets the mitochondrial bioenergetics, while diminished CCL3/CCL4 levels indicate the down regulation of the BCR signaling pathway in CLL. Our data support evaluation of mitochondrial respiration as a preclinical tool for the response assessment of CLL cells. Full article
(This article belongs to the Special Issue Chronic Lymphocytic Leukemia)
Show Figures

Figure 1

Back to TopTop